Table of Contents

Table of Contents

Restarting a stopped calculation
Saving the checkpoint file
Specifying the location of the checkpoint file
Restarting the calculation from the checkpoint file
Restarting the original script
Restarting geometry optimizations

A WwN N —

1/4

QuantumATK

= QuantumATK

¢ Contact

Docs » Tutorials » Miscellaneous » Restarting a stopped calculation

Restarting a stopped calculation

Version: P-2019.03

Downloads & Links

&, PDF

In this tutorial, you will learn how to restart a calculation that was terminated before converging (for
example due to power outage, exceeding walltime in a queue, or exceeding maximum number of
iterations) without having to start all over.

Saving the checkpoint file

It may happen that a calculation terminates before converging, for instance due to a power outage, or if a
job runs over its allocated walltime in a queue. It may also be that convergence is not reached within the
set number of maximum iterations. In these cases you will want to restart the job from the point it
stopped.

For this purpose, QuantumATK saves the current state of the calculation to a checkpoint file at regular
intervals. The default is to save it every 30 minutes. The name of the checkpoint file is always written in
the log file.

| Checkpoint Handler |
| Filename : /tmp/checkpoint28146777.nc |
| Interval : 0.5 h |

Calculating Eigenvalues
Calculating Density Matrix :

| 0 Fe [0.717 , 0.717 , 0.716] 5.39789 2.59547 -0.00664 |

2/4

The default location of the checkpoint file is in the directory specified by the environment variable
TEMP. If you are running on a large cluster, you may not have permission to write to the TEMP
directory, and even if you do, any files you create in this directory may be deleted automatically when
your job finishes — even if the QuantumATK calculation did not converge. In this case it is important to
specify the location of the checkpoint file manually, e.g. in your HOME directory.

Specifying the location of the checkpoint file

The image below shows how you can set the saving interval and the name of the checkpoint file using the
New Calculator block in the QuantumATK (@ Script Generator.

New Calculator

Calculators Basic Settings
® ATK-DFT Electron temperature | 300] |K =
() ATK-SE: Extended Huckel Density mesh cut-off | 75 | | Hartree =
() ATK-SE: Slater-Koster - -
Charge | 0
) ATK-Classical) !
. . Exchange correlation |LDA =
) Abinit -
O FHI-aims Spin | Unpolarized s

Calculator settings

Algorithm parameters

Basic

Iteration control parameters
Basis set/exchange correlation
Numerical accuracy parameters
Parallel parameters CheckPoint
Poisson solver

k-point Sampling

n,q|5 ; ng |5 ; ng |5

File Location |:fh0mefuserfcheckpcint_silicon.nc ezl

Interval (hours) | 0.50

10
& save @& Print

File [silicon.n | | - | Label | |

-

If you wish, you can refer to the QuantumATK Reference Manual to get more information on how to set
these parameters or turn off the checkpoint handler.

| Estimate Memory Usage |

Restarting the calculation from the checkpoint file

The quickest way to restart a calculation from a checkpoint file is to read the configuration from the
checkpoint file and then call update on the configuration.

configuration = nlread("checkpointfile.hdf5")[0]
configuration.update()
nlsave("file.hdf5", configuration)

The argument to nlread() should of course be set to the actual checkpoint file name.

The disadvantage of this approach is that if the original script contained any analysis blocks (e.g. to
compute the band structure), you need to manually insert those blocks to the bottom of the restart script.

Restarting the original script

3/4

Conceptually, a better approach would be to rerun the script you already have, but tell it to start not from
scratch, but from the checkpoint file. This would also retain all analysis blocks, as defined in the original
script. This is possible; you just need to insert the lines of code shown above in the appropriate way.

Let us assume that you have a “standard” script, produced by the Script Generator, without too many
elaborate steps. That is, a straightforward sequence of “Configuration” and “New Calculator”, followed by
analysis blocks. In other cases, you can always modify the script in the same way as described here, but
you have to take more care to preserve the logic. Special care needs to be take if the script contains an
InitialState block.

Open your original script in the @ Editor and locate the line

device configuration.update()

For bulks or molecular calculations, the variable will be called bulk configuration or
molecule configuration instead.

Then add the following line before that line:

device_configuration = nlread("checkpointfile.hdf5")[0]

Again, the argument to nlread() should of course be the actual checkpoint file name.

Now you can rerun the script.

e The checkpoint file is not written exactly at the specified interval, but only when a step in the self-
consistent loop has been completed and the requested time interval has passed.

e The history of the self-consistent loop is not written to the checkpoint file. Therefore, convergence
might become more difficult when restarting, since the mixing algorithm has less information to
work with than normally.

Restarting geometry optimizations

Restarting a geometry optimization is much more complicated. For a lengthy relaxation it is therefore
always a good idea to use a trajectory file; if the calculation is interrupted you can take out some of the
later images and set up a new optimization using this geometry as a starting point. Note, however, that
some images in a QuasiNewton geometry optimization are “test balloons”, which may correspond to very
large forces (i.e. a very bad guess), especially during the first 5-10 steps. So, it can be important to
choose an image that does not have too large forces.

Q@ Previous Next ©

© Copyright 2023 Synopsys, Inc. All Rights Reserved.

4/4

	Table of Contents
	Restarting a stopped calculation
	Saving the checkpoint file
	Specifying the location of the checkpoint file

	Restarting the calculation from the checkpoint file
	Restarting the original script
	Restarting geometry optimizations

