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In this tutorial, we will train a Moment Tensor Potential (MTP) for bulk HfO, referenced to DFT using
QuantumATK @.

Background

Machine learned interatomic potentials (MLIPs) have become popular in recent years since they can
provide ab initio level of accuracy in energies, forces and stresses needed for MD simulations, geometry
optimizations and single point calculations at modest computational effort. Moment tensor potentials
(MTPs) are a class of MLIPs that have been identified to provide high performance for a given accuracy

when compared to other MLIP models in the literature [l on training an MTP for a system of interest, our
goal is to establish a structure-property relationship - here, ‘structure’ is the atomistic description of the
system (3N Cartesian coordinates) and ‘property’ is the system’s potential energy surface (PES - 3N
dimensional function).

Within MTP framework, the total energy of a configuration is computed as the sum of energy
contributions from atomic neighborhoods. Atomic neighborhoods are defined as the representation of the
immediate chemical environment of each atom in the system within a cutoff radius. Since Cartesian
coordinates are not invariant to translations, rotations and permutations of atoms in the configuration,
they can not be used as such as inputs in MTP training. Moment tensors include the radial, angular, and
many-body distribution of atoms within a cutoff sphere. Their contractions into scalar basis functions
provide an invariant representation of atomic environments (‘structure’) needed as input for MTP training
(21 An electronic structure method, such as density functional theory (DFT), that describes the system of
interest accurately is chosen as the ‘reference method’ to compute the ‘properties’ of interest. A ‘reference
data set’ includes the reference configurations representing the system of interest along with their
energies (E), atomic forces (F) and stress tensors (S) computed using the chosen reference method.
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A MTP can be trained by fitting a linear regression model to the reference data set. MTP training on a
reference data set can be performed in two ways: batch learning and active learning. In batch learning, an
MTP is trained on a precomputed reference data set. In active learning, a preliminary reference data set is
improved on-the-fly by actively adding missing configurations to it. This is done by first training a
preliminary MTP on the initial reference data and starting an MD simulation using this MTP potential.
When geometries that are very different from the initial reference geometries are encountered in the MD,
they are added to the reference data set after computing their E, F and S using the reference method as

described in 3 and [41.

It is important to understand that MTPs or any other MLIPs are trained to describe a system accurately
(very close to the reference method) within the configurational space of the system sampled in the
training data set. Unlike many empirical potentials with physical functional forms, MLIPs are not highly
transferable. Therefore, an MLIP trained for a bulk material might not describe free surfaces or
nanoparticles of that material accurately unless such geometries are explicitly included in the training
data set. Moreover, an MLIP trained for room temperature behavior of a system might not work reliably to
describe the system at high temperatures unless disordered structures relevant at high temperatures are
included in the training dataset. To improve transferability, active learning of the system at its desired
state (high temperatures or surface geometries) should be carried out in order to include the missing
reference data.

In this tutorial we will generate an MTP for bulk HfO, that can predict DFT quality E, F and S of both
crystalline and amorphous configurations using NanoLab GUI. Since DFT is used as reference method,
this will take 4 to 6 days depending on the computational resources available.

If you are only interested in training an MTP to simulate crystal structures, you can skip the active
learning part and go from the initial reference geometries directly to the final training in Step 3.

Getting Started

Create a new project folder in NanoLab and copy the following files containing different bulk phase
configurations of crystalline HfO, (& cubic.hdf5, & monoclinic.hdf5, & orthorhombic.hdf5).

Crystal reference geometries can be conveniently obtained using the open databases such as
Materials Project that is accessible via NanolLab

As the next step, import the following two templates & random_displacement_template.hdf5 and
< active_learning_template.hdf5 to the script generator [§ following the procedure given in the below

graphic.
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Importing a script template
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An schematic illustration of the workflow is shown below. There are three steps involved which are

detailed in the text further below.
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Step 1: Prepare Initial Reference Configurations

Load one of the bulk phase configurations of HfO, on to the script generator [ and apply the
random_displacement_template. This will add a code snippet for crystalTrainingRandomDisplacements
in which the user can edit the supercell repetition list, ionic and cell rattle amplitudes to create random
configurations based on the geometry. These randomly generated geometries will be stored as a list in
the file named initial_training_sets.hdf5. Choose large repetitions for small unitcells and vice-versa. Save
the script and run it locally as it takes only a few seconds.

Repeat the above procedure for the other two bulk phase configurations of HfO, . The corresponding
python scripts used for this tutorial can be downloaded here (& cubic.py, & orthorhombic.py and

& monoclinic.py). Notice that, in the above scripts, the supercell repetition list is different for the different
crystal phases depending on the size of the unitcell. The template uses (1x1x1) and (2x2x1) supercells by
default. However, for the cubic phase, include (2x2x2) and (3x3x3) instead of the default as in the scripts
above. The resulting /nitial_training_sets.hdf5 file will contain three lists one for each bulk phase.

The above scripts must be run in sequence and can be run locally (via atkpython in terminal or via
JobManager) as it takes only a few seconds.

If you alter the scripts from above, different repetition list or rattling amplitudes, then the training
geometries will be different and ultimately result in a different MTP fitting parameter set. Thus, the
users might find that the exact training and testing errors differ a bit from what is given further below.

Step 2: Compute Reference Data and Setup Active Learning

Now that we have a set of initial reference geometries from step 1, we can proceed to compute reference
data using DFT and improve the initial training data using active learning molecular dynamics on bulk
amorphous configuration of HfO, . For this, use the amorphous configuration from this file

& amorphous.hdf5. This initial amorphous configuration was generated using the Packmol Builder plugin
and preoptimized with Trinastic_HfOSiTaTi_2013 forcefield. Send this configuration to the script
generator [ and apply active learning template. This loads a calculator and 4 code snippet blocks to the

script generator that can be edited.
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Calculator: The reference calculator to use for MTP training

For this example, the DFT settings we have chosen include LCAO PseudoDojo medium basis set and PBE
exchange-correlation functional. Detailed calculator settings can be found in the script
& active-learning.py.

For accurate MTP training, higher accuracy settings than the ones used in this tutorial may be needed.

Snippet 1: Import reference geometries

In the first snippet, there is code to extract the training data parameters for the reference configurations
automatically from /nitial_training_sets.hdf5. The snippet also includes optional code to extract
geometries from a Trajectory or MDTrajectory objects, which can be uncommented if one wants to use
configurations from MD trajectories as initial training data.

Snippet 2: Compute reference data

In the second snippet, we use MomentTensorPotentialTraining object to compute reference energies,
forces and stress using the DFT reference calculator loaded earlier. The user can modify the values for
number_of_processes._per-_task, to set the number of MPI processes used for each reference calculation
and for the /og_filename_prefix. The other settings can be left as such. This snippet will create a file
named reference-data.hdf5 which includes the initial reference data set corresponding to the geometries
from step 1 to be used in active learning.

We suggest running this script on a node with several cores as this could take 1 to 2 days using 16
cores.

Snippet 3: Customize MTP training

In the third snippet, the user can set values of key parameters needed for the MTP training. This includes
the following:

NonLinearCoefficientsParameters : User can specify if they like to perform optimization of the non linear
coefficients that determine the shape of the basis functions for each element pair. If set to True then
there are options to perform optimization using energy only, maximum optimization iterations and a
random seed to initialize the coefficients. Please note that this is a local optimization in the MTP
parameter space, and different initial values may result in different solutions. How to find initial values for
a good fit will be discussed below.

constant_terms. No need to edit this part of the snippet as it automatically computes the isolated atomic
energies of the elements in the reference data set using the reference calculator, which is not yet
automatically computed for active learning.

MomentTensorPotentialFittingParameters: In this part of the snippet, the size of the basis set to be used,
cutoff radii for atomic neighborhood description and force cap on configurations can be provided. Note
that geometries with a maximum atomic force above the forces_cap value will be ignored during training.

Snippet 4: Set up active learning

In this final snippet all settings relevant for active learning will be provided.

ActivelLearningSimulation: In this part, user can provide the threshold values for the extrapolation grades
and an interval at which they will be computed in MD [4]. The configuration will be added to a candidate
list when the extrapolation grade goes above candidate_thresholdvalue and the MD will stop if the
extrapolation grade goes over retrain_threshold. The max_forces_checkvalue sets the force value, which,
when encountered during the simulation, will trigger computation of extrapolation grade for the
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corresponding MD configuration.

MaxwellBoltzmannDistribution: is included to initialize the velocities at a target temperature for MD. In this
tutorial example, we chose to run active learning at 3000 K.

NPTMartynaTobiasKlein: is used as the default MD ensemble method which relaxes both ions and
volume. This can be changed to other ensemble methods if needed.

The method runMolecularDynamics starts an active learning MD simulation of the amorphous HfO,
geometry. Every time the retrain_thresholdis reached, this method will be restarted until the MD
simulation completes the set number of time steps. Before each restart, unique geometries from the
candidate list will be selected and reference calculations on those geometries will be performed using the
reference calculator. The additional reference data is then added to the initial dataset and a new MTP will
be generated using the settings in snippet 3. This updated MTP will be used for the restarted MD
simulation.

The script that is used for this tutorial is available here & active-learning.py.

At the end of active learning simulation, a file named active_learning_candidates.hdf5is created, that
contains the additional reference data.

A common source of problems in MTP active learning is the following error message:
“No new candidates found in active learning MD.”

This is often accompanied by large values for the extrapolation grade. The reason for this problem is in
most cases that the condition number of the training matrix is too large, which causes numerical
inaccuracies when inverting this matrix to calculate the extrapolation grade and selecting the
candidates via the maxvol algorithm. In this case it usually helps to reduce the number of MTP basis
functions to improve the condition number and the numerical stability of the maxvol calculation.
Alternatively, one can also try to include more different training configurations in the initial training set.

To repeat active learning simulation with a different MD setting, the training data computed so far should
be put-together as the initial training data. In this case, reference-data.hdf5 consists of the crystalline
random displacement data as a MomentTensorPotentialTraining object and
active_learning_candidates.hdf5 contains data for unique amorphous geometries found in active learning
as a Trajectory object. The initial_training_data parameter in the ActivelLearningSimulation block in the
script should be a list of either Trajectory objects or MomentTensorPotentialTraining objects. We can
convert a MomentTensorPotentialTraining object in file reference-data.hdf5into a Trajectory object and
prepare the updated initial training data for consecutive active learning simulations as

moment_tensor potential training=nlread('reference-data.hdf5',MomentTensorPotentialTraining)[-1]
traj 1=TrainingSet(moment tensor potential training, recalculate training data=False)
traj 1=traj 1l.configurations()

traj 2=nlread('active learning candidates.hdf5',Trajectory)[-1]

initial training data = [traj 1, traj 2]

In a similar way, the /initial_training_data can be augmented from several active learning simulations.

Step 3: Find an MTP with Lowest Error

In active learning, the non linear coefficients are randomly initialized. So, in order to find an MTP with the
lowest error, we have to train several MTPs with different initial non linear coefficients. This is
synonymous with randomly sampling several points in the MTP hyper parameter space and performing a
local optimization of the non linear coefficients.
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This can be done using a script like this & MTP_training.py which uses a for loop over different
random_seed value used to initialize the coefficients. Training data from the files reference-data.hdf5and
active_learning_candidates.hdf5 are used as input in this batch training. This script also uses 80% of the
reference data for training and 20% for testing.

O Note

This step involves training about 200 MTPs in sequence and might take several hours. For better
performance choose MPI over openMP, as the MTP training implementation primarily supports MPI
parallelization. Users could reduce the number of MTPs trained in line 32 of the script. By default, the
script runs a non-linear coefficients optimization for each fit. To accelerate the training, users can turn
the optimization off by specifying perform_optimization=False and initial_coefficients=Random. Then
the fits run without local optimization of the non-linear coefficients and the user can choose to
separately optimize the coefficients for the best fit from the 200.

The log output lists training errors for all of the MTPs generated from running the script and the MTP with
lowest error for the training/test set (Energy RMSE: 10.7/10.7 meV/atom; Force RMSE: 0.39/0.40 eV/A;
stress RMSE:10.5/9.5 meV/A*3) is chosen for the validation MD test. Scatter plots comparing the energy,
force and stress computed from MTP and reference method are shown below.
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O Note

Please note that training errors and the above plot will look different when any change to the scripts in
steps 1, 2 and 3 are made. As long as the errors are comparable to the above given values, the MTP
can be used in validation MD.

The MTP stated above can be generated using this script & MTP_training_best.py, provided the same
reference data obtained from executing & active-learning.py is used.

O Note

In the above script, the random seed for initializing the non linear coefficients is choosen as that which
gave the lowest force RMSE when running MTP_training.py script. It is an optional step since the final
mtp file is available from the output of MTP_training.py anyways.
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The scatter plot shown above can be created by running atkpython in a terminal and calling the below
lines of code while inside the folder with the results for ‘MTP_training_best.py'.

moment tensor potential training=nlread('MTP training.hdf5',MomentTensorPotentialTraining)[-1]
moment tensor potential training. nlplotScatter(fit index=0)

Validation MD Simulation

Now, the MTP obtained in Step 3 will be employed in an MD simulation of amorphous HfO , for 0.1 ns
using this script & MD.py. The mtp file used in this script can be found here & mtp_potential.mtp. This

mtp parameter file can be loaded to the script generator via GUI as shown below (click the graphic to see
enlarged).
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The radial and angular distribution functions from the resulting trajectory is compared with those from a
DFT-MD simulation using the same XC functional but reduced basis set as shown below.

Radial Distribution Function

g(r)

Pair Distance (&)

9/12



Angular Distribution

0.025 A

0.020 ~

0.015 A

0.010 ~

Distribution (*~1)

0.005 +

0.000

20 40 60 80 100 120 140 160
Angle (%)
As can be seen from the images above, there is a good agreement between the MTP generated trajectory
and the DFT trajectory.

The above procedure can be directly applied to train accurate MTPs describing any bulk system of
interest with minimal effort using QuantumATK.
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FAQ Section

Q1. In step 1, one prepares the initial configurations for their system. How important
is it to define all of the different phases of the material since in the next step (during
active learning), the missing configurations are added anyways?

A1. Active learning is used to find and add missing configurations in the initial dataset with the objective
to map out the configurational space of interest. But for active learning to work well, the initial training
data should have at least coarsely sampled all relevant regions of the configurational space of interest to
some extent. So, for example, if your interest is to get the properties of one particular crystalline phase of
HfO, only - then it is enough to include the randomly displaced crystalline geometries of that crystalline
phase only in step 1. Then the active learning, using the chosen crystalline phase as the initial geometry
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for molecular dynamics, ensures finding missing geometries to represent that crystalline phase
accurately. Now, if describing amorphous HfO, is your goal, then it helps to include crystal displacement
data for all available phases in step 1 and do the active learning as described in the tutorial.

Q2. Is step 1 always necessary or can one start from active learning directly?

A2. If one looks at the workflow figure in the tutorial, it mentions training a preliminary MTP from the initial
training data and use it to run the active learning MD (not DFT MD). DFT is employed only when missing
geometries are found and needed to be added to the training data. So, we want to make sure that this
preliminary MTP is already good enough to sample the equilibrium around the crystal geometries. This is
where step 1 helps us immensely and becomes necessary.

Q3. This question is bout the fitting parameter options in step 2, snippet3. Is there
some way to guess these options for particular system - for example cutoff radii
(check if they have any sense) without actually finishing step 2.

A3. In snippet 3, there are three blocks. The constant term block is parameter free. Keywords in non-linear
optimization block are also mostly universal. System specific keywords are in the MTP training block.
Outer radii can be chosen based on the radial distribution function of the system and how many
coordination shells you would like to include in the atomic description. Basis set size should be chosen
based on the complexity of the atomic environment. Our suggestion is to start active learning with a
smaller basis set (around 300 functions) and repeat it with increased basis. Step 2 includes computing
the initial training geometry and active learning in which the former is the computationally expensive part.
Once the initial training data is computed, re-running the script in the same folder will use the already
computed initial reference data and only perform active learning part again. The costly step in active
learning is the DFT calculation of the missing geometries. So every time you repeat active learning, the
active learning candidates from previous run can be added to the initial training data set.

Q4. Under non-linear parameters optimization, what else could be optimized if
energy_only option is False and when this is recommended?

A4. When this keyword is set to False, then the non-linear parameters are optimized with respect to E, F
and stresses. We suggest using energy only optimization in active learning. If needed, you can optimize
on forces and stresses in batch learning. Note that this is only a local optimization in the hyper parameter
space.

Q5. In the user example for ActiveLearningSimulations in the manual, Hf and O
isolated energies are given in the example script but here, in the tutorial, we don’t
have them defined. Why is that?

AS5. In snippet 3, there is a code block to compute the constant terms, which are the atomic energies of
the elements in the system. They are computed automatically before training the preliminary MTP for
active learning.

Q6. In step 3, it is said that this may take several hours to get done. Where could one
define the parallel options? Would it be possible to do in parallel the steps from the
loop?

A6. Yes, one can run the script in step 3 multiple times with different random state while keeping the index
in the loop smaller. Then consolidate the results from all the individual log files to find the one with the
lowest error.

Q7. Regarding the MTP_training.py and MTP_training_best.py, the former contains a
loop over random seeds values, while in the second one the value is given. Is the
best (lowest RMSE) seed chosen automatically (given somewhere in main output of
MTP_training.py) or user need to actually screen all these mtp_fit_mtp_i.log files?

A7. In this example, the best random seed is not found automatically. The output of MTP_training.py
(MTP_training.log) contains a list of RMSEs and the corresponding MTP file names at the end of the file.
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One can choose the .mtp file with the lowest force error and use it for validation MD. So, it is optional to
run MTP_training_best.py. However, one can write a print statement (print(i,rand)) in line 34 of the script
MTP_training.py to get the values of ‘rand’ printed to the log file.

Q8. This question is about validation MD simulation step. MD.py script contains MTP
obtained in the step 3. But on the last two pictures there displayed also results of
DFT-MD calculations. So what basis sets were used for the DFT-MD run?

A8. For validation, a short DFT-MD with PBE XC functional and FHI Single Zeta Polarized basis set is
performed to get the DFT results.
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