
1
2
3
3
4
4
4
6
7
9

10
11
11
12
13
13
13
13
13
14
14
15
16
17
17
17
19
21
21
21
22

Table of Contents

Table of Contents
Viscosity in liquids from molecular dynamics simulations

Theory
Molecular viscosity
Force fields

Computational procedure
Building the initial methanol configuration
Adding the forcefield to the calculation

Atom Tags
Bonding Terms
Angle Terms
Torsion Terms
Van der Waals Terms
Electrostatic Terms

Relaxing the starting structure
Optimizing the structure
Obtaining the right density

Equilibrating the structure
Setting the production calculation
Modifying the script

Adding the torsion terms
Defining the hook function
Using the hook function in the molecular dynamics simulation

Running the calculation
Analyzing the results

Viewing the change in pressure
Calculating the viscosity from the Einstein relationship
Calculating the viscosity from the Green-Kubo relationship

Extending the results
Running more independent trajectories
Improving the accuracy

1/23

Downloads & LinksDownloads & Links

 PDF
Basic QuantumATK Tutorial
ATK Reference Manual
 methanol_viscosity.py
 pressure_analysis.py
 viscosity_analysis.py
 green_kubo_analysis.py

Docs » Tutorials » Molecular dynamics » Viscosity in liquids from molecular dynamics simulations

Viscosity in liquids from molecular dynamics simulationsViscosity in liquids from molecular dynamics simulations

Version:Version: P-2019.03

In this tutorial you will learn how to calculate the viscosity of different liquids using molecular dynamics
(MD) simulations using the example of liquid methanol. Understanding viscosity is critical in designing a
number of industrial chemical processes, as viscosity gives a description of how the liquid flows. This
tutorial demonstrates how you can use the QuantumATK tools to simulate the viscosity of a simple fluid.
This methodology can be applied to much more complicated fluids as well as mixtures.

To simulate the behavior of liquid methanol we use classical molecular dynamics to generate trajectories
of the motion of molecules. These trajectories give the information necessary to statistically calculate the
overall properties of the liquid. This tutorial also demonstrates how to set up and use specific bonded
forcefields that have been created for these types of molecular problems.

ContentsContents

Viscosity in liquids from molecular dynamics simulations

Theory

Molecular viscosity

Force fields

Computational procedure

Building the initial methanol configuration

Adding the forcefield to the calculation

Relaxing the starting structure

Equilibrating the structure

Setting the production calculation

 QuantumATKQuantumATK

 Try it!

 QuantumATK

 Contact

2/23

Modifying the script

Running the calculation

Analyzing the results

Viewing the change in pressure

Calculating the viscosity from the Einstein relationship

Calculating the viscosity from the Green-Kubo relationship

Extending the results

Running more independent trajectories

Improving the accuracy

TheoryTheory

Molecular viscosityMolecular viscosity

Viscosity is a measure of the friction between molecules passing each other in the fluid. There are a
number of ways of estimating this friction[1], but one that is commonly used is the Einstein relationship
where the viscosity

 can be stated as[2]:

Here the quantities being integrated are the off-diagonal elements of the pressure tensor. The labels
 and
 refer to these elements. The other quanities represented here are time

, temperature
, volume
, and the Boltzmann constant
.

An alternative method for calculating the viscosity is through the Green-Kubo relation [3]:

Here the quantity in the angle brackets is the autocorrelation function of the pressure tensor. As this auto-
correlation function decays to zero at long timescales, the integral converges to give the fluid viscosity.

Both of these equations may produce similar results. For a trajectory with a large number of data points,
the Green-Kubo expression can become computationally expensive. Calculating the autocorrelation
function scales as

 where
 is the number of data points. The Einstein relationship scales as only

. As calculating viscosity requires looking at a large number of data points, the focus will be placed
on the Einstein relationship.

The pressure tensor itself is made up of contributions both from the motion of the atoms and also from
how the atoms interact with the boundary conditions in the simulation. The pressure tensor can be given
as:

η

η =
lim
t→∞ ⟨(∫ t

0
ταβ(t′)dt′)

2⟩V

2tkBT

α
β
t
T
V
kB

η = ∫ ∞

0
⟨ταβ(t0)ταβ(t)⟩ dt

V

kBT

O(N 2)
N
O(N)

ταβ =
∑
i mivi,αvi,β −

dE

dεαβ

3/23

Here
 references the mass of atom

,
 references the velocity of the atom

 in the cartesian direction
 and
 is the energy of the system which is being differentiated with respect to the strain

Force fieldsForce fields

Classical force fields work by replacing the computationally expensive calculation of electronic structure
with simple functions designed to approximate the overall energy. This approach enables the effective
simulation of much larger systems, well beyond what is possible with electronic structure calculations.
One of the main challenges in this approach is fitting parameters for the replacement functions so they
can accurately predict the energy.

One approach is to divide molecules up into a number of chemical types. Specific parameters can then be
found for different types of interactions using these types. As an example, an sp carbon in ethane will
have different associated potentials to an sp carbon in a benzene ring. As several combinations will be
excluded based on how the types are defined, this limits the number of parameters that need to be found.
Because parameters are fitted for specific atomic types and functions, these types of potentials can often
be more accurate. As a trade-off these potentials are often more difficult to set up, as the chemical types
for each atom need to be assigned for the structure. Potentials of this type also cannot model reactions,
as the atom connectivity is needed to determine the chemical type.

In this tutorial you will use the OPLS-AA forcefield to model methanol [4]. The OPLS-AA forcefield uses
atom types with specifically fitted potentials for those types. This tutorial covers how to set up
calculations using these types of forcefields.

Computational procedureComputational procedure

Building the initial methanol configurationBuilding the initial methanol configuration

Open the BuilderBuilder and select Add ‣ From Database. Add the molecular structure of methanol from
Database to the StashStash, making sure to choose the molecule database by selecting Databases ‣
Molecules.

mi

i
vi,α
i
α
E
εαβ

3
2

4/23

Now the chemical types for each of the atoms needs to be assigned. OPLS methanol has 4 types:

‘CT’ for the tetrahedral carbon

‘HC’ for the hydrogens attached to the carbon

‘OH’ for the alcohol oxygen

‘HO’ for the alcohol hydrogen.

Select the three hydrogen atoms attached to the carbon. Set their types to ‘HC’ by going to Selection Tools
‣ Tags and typing in the tag ‘HC’. You should now be able to select these atoms by using the tag. Repeat
the process for the other three atom types.

 TipTip

When selecting atoms, holding down the Ctrl key adds atoms to the current selection, while holding
down the Shift key removes them.

Next create a bulk model of liquid methanol by selecting Builders ‣ Packmol. Drag the molecule of
methanol from the stash into the molecule type column, and select 250 molecules. Set each cell length to
28 Ångstroms. Click Create.

5/23

Mouse over the atoms in the new structure to check that the tags reflect the type of each atom.

Adding the forcefield to the calculationAdding the forcefield to the calculation

6/23

One you are happy with the atom tag assignment, send the bulk methanol structure to the ScripterScripter
using the Send ToSend To icon .

In the ScripterScripter first add in a ForceFieldCalculatorForceFieldCalculator block. In this block the forcefield needs to be defined. To
do this a new forcefield definition needs to be added to the script. Open the ForceFieldCalculatorForceFieldCalculator and
select New. This opens up the Potential EditorPotential Editor dialogue to enter in new forcefield terms.

Give the new potential the name Methanol OPLS-AA . When opening the Potential EditorPotential Editor particle types are
added for each atom. These need to be deleted and replaced with particle types for the 4 atom tags.
Select each element and press Remove. Then press Add to add each atom term.

Atom TagsAtom Tags

Pressing Add opens the Particle Type EditorParticle Type Editor. In this the type and basic information about the non-bonding
parameters for the type are added.

The OPLS-AA forcefield used the expression for the non-bonding energy
:

The terms
 and

Enb

Enb =
∑
ij 4ϵij[()12

− ()6] +
σij

rij

σij

rij

qiqj

4πε0rij

ϵij

7/23

 are calculed from the Lorentz-Berthelot combination rules:

The nonbonding parameters for the 4 atom types in methanol are:

TypeType / kcal mol / kcal mol / Å / Å / e / e

CT 0.066 3.50 0.145

OH 0.170 3.12 -0.683

HC 0.030 2.50 0.04

HO 0.000 0.00 0.418

 NoteNote

The HO type is not a van der Waals site in the OPLS-AA potential, and so the parameters for this atom
are zero. It is however an electrostatic site, and so carries a charge.

Select the element from the pop-up periodic table, and then select the tag from the dropdown list. Add the
corresponding nonbonding parameters. As an example, the input for the CT type is shown below.

i

σij

ϵij = √ϵiϵj

σij =
σi + σj

2

ϵi -1-1 σi qi

8/23

Bonding TermsBonding Terms

Bond stretching energy
 is approximated by a simple harmonic spring equation:

There are three different types of bonds in methanol. The parameters for these bonds are given in the
following table:

Type IType I Type JType J / kcal mol / kcal mol Å Å / Å / Å

CT OH 320.0 1.41

CT HC 340.0 1.09

OH HO 553.0 0.945

To add the bonding potentials, in the Potential Components box select Add ‣ Add potential component.
From the list of potential types select HarmonicBondPotential. Selecting a potential displays the
parameters for it one the right hand side. Add three potentials and enter the parameters for each bond
type. The input for the CT - OH bond type is shown below.

Ebond

Ebond =
∑
ij Kij(rij − r0)2

Kij
-1-1 -2-2 r0

9/23

Angle TermsAngle Terms

Angle stretching energy
 is approximated by another simple harmonic spring equation:

There are three different types of angles in methanol. The parameters for these angles are given in the
following table:

Type IType I Type JType J Type KType K / eV rad / eV rad / degree / degree

CT OH HO 2.3861 108.5

HC CT OH 1.5184 109.5

HC CT HC 1.4317 107.8

To add the angle potentials, in the Potential Components box select Add ‣ Add potential component.
From the list of potential types select HarmonicAnglePotential. Selecting a potential displays the
parameters for it one the right hand side. Add three potentials and enter the parameters for each bond

Eangle

Eangle =
∑
ijk Kijk(θijk − θ0)2

Kijk
-2-2 θ0

10/23

type. The input for the CT - OH - HO angle type is shown below.

Torsion TermsTorsion Terms

In methanol, there is only one bond torsion term. This extends across the type HC - CT - OH - HO . The
bond twisting energy

 in this term is approximated by a Fourier expansion:

The general torsion term in the OPLS-AA potential is actually a more complicated 3-term Fourier
expansion. This potential cannot be added in directly in the interface, but can be easily set up with a small
modification to the script. To create a place for the potential, in the Potential Components box select Add
‣ Add potential component. From the list of potential types select CosineTorsionPotential. We will set the
parameters later when editing the final script.

Van der Waals TermsVan der Waals Terms

While parameters have been added for single atom types in the particle type definition, it is also necessary
to add terms for pairs of types. As the atom type HO is not a van der Waals site, pair terms involving this
atom do not need to be added. The remaining 3 types then gives 6 unique combinations.

For each combination in the Potential Components box, select Add ‣ Add potential component. From the

Etorsion

Etorsion = K(1 + cos(3ϕ))

11/23

list of potential types select LennardJonesSplinePotential. The parameters for each can now be set on the
right hand side.

Sigma and epsilon can be filled in from the single atom type parmameters by pushing Apply
Combination Rules

Set r to 10 Å. This sets the distance beyond which potential terms are ignored

Set r to 9 Å. This sets the distance beyond which potential terms are scaled down by a spline
function, so that they are zero at the cutoff. This is necessary so that there is not a sudden increase in
forces as atoms come within range of each other.

Set Bonded mode scaling to 0.5 . This scaling is for atoms connected through 3 bonds and is
specified by the OPLS-AA potential.

An example for the CT - OH nonbonding potential is shown below.

Electrostatic TermsElectrostatic Terms

Atomic charges were added to the model in the definition of particle types. A summation method for the
electrostatic terms still needs to be added.

In the Potential Components box select Add ‣ Add potential component. From the list of potential types
select CoulombSPME. This selects Smooth Particle Mesh Ewald summation of electrostatic terms. This
method uses Fourier transforms to correctly estimate the long-range electrostatic interactions.

cut

i

12/23

In the parameters section on the right hand side:

Set r to 9 Å.

Set Accuracy to 0.001 .

The other default parameters are suitable for the calculation.

Having added all of these potentials terms, click OK on the Potential EditorPotential Editor and on the
ForceFieldCalculatorForceFieldCalculator

Relaxing the starting structureRelaxing the starting structure

Optimizing the structureOptimizing the structure

Now that the forcefield has been defined, calculations can be added to the script.

 NoteNote

This tutorial follows the general methodology for running molecular dynamics simulations. For more
information on specifics of the method and settings see the tutorials:

How to Setup Basic Molecular Dynamics Simulations
Diffusion in Liquids from Molecular Dynamics Simulations

The first step is to optimise the geometry to remove any large forces from the starting configuration.
Large initial forces can cause integration problems in the following molecular dynamics calculations. It is
not important that the structure is completely optimised, only that any atom-atom overlaps are removed,
which usually happens in the first few steps of a geometry optimisation.

In the ScripterScripter add a Optimization ‣ OptimizeGeometry block. The default parameters for this block are
sufficient.

Obtaining the right densityObtaining the right density

When the structure was built, the density was too low to make it easier to add methanol molecules into the
bulk structure. Now the cell needs to be contracted to approximately the right density. This can be done
with a simple molecular dynamics calculation.

Add a molecular dynamics block using the NPT Berendsen barostat. This barostat is more stable but also
less accurate than the MTK barostat, making it useful for creating relaxed structures from inital guesses.
A run of 100ps is typically sufficient for the system to condense to the liquid density.

Equilibrating the structureEquilibrating the structure

Add a molecular dynamics block using the NPT Martyna Tobias Klein barostat. In this calculation 100ps is
an adequate time for the simulation to equilibrate. Equilibration time can vary greatly however depending
on the system being investigated. The simulation should also be started using the velocities from the
previous calculation, which can be done by setting the Initial Velocity type to Configuration Velocities .

Setting the production calculationSetting the production calculation

Add a molecular dynamics block using the NPT Martyna Tobias Klein barostat. Set the dynamics to run
for 500ps. The appropriate length of the production simulation depends largely on the system being
studied and also the desired accuracy of the final result. Two specific things to that should be set in this
part are:

Set the Save Trajectory box to Production_Trajectory.hdf5

Set the Log interval box to 1000

cut

13/23

Both of these details will be used in the analysis part of the tutorial.

Modifying the scriptModifying the script

Adding the torsion termsAdding the torsion terms

Now that the basic calculation is created, ScripterScripter set the output file to Methanol_Viscosity.hdf5 . The
script generator should look like:

The script can now be sent to the EditorEditor using the Send ToSend To icon . The torsion parameters can now
be set. The torsion potential is defined in the section:

_potential = CosineTorsionPotential(
 particleType1 = ParticleIdentifier('H', ['HC']),
 particleType2 = ParticleIdentifier('C', ['CT']),
 particleType3 = ParticleIdentifier('O', ['OH']),
 particleType4 = ParticleIdentifier('H', ['HO']),
 k = [0.0*eV,],
 n = [0,],
 delta = [0.0*Radians,],
)
potentialSet.addPotential(_potential)

Replace this block with the block

_potential = CosineTorsionPotential(
 particleType1 = ParticleIdentifier('H', ['HC']),
 particleType2 = ParticleIdentifier('C', ['CT']),
 particleType3 = ParticleIdentifier('O', ['OH']),
 particleType4 = ParticleIdentifier('H', ['HO']),
 k = [0.176*kiloCaloriePerMol,],
 n = [3,],
 delta = [0.0*Radians,],
)
potentialSet.addPotential(_potential)

14/23

Save the edited script.

Defining the hook functionDefining the hook function

To calculate the viscosity the values of the pressure tensor during the simulation are required. As the
pressure changes rapidly during the simulation, a high resolution of data is necessary. While saving
structures into the trajectory also saves the pressure tensor, saving trajectory files with short timesteps
quickly results in unreasonably large files. What is required is a method to save just the pressure
information at each step.

In QuantumATKQuantumATK this can be easily achieved with hook functions. These are functions that are run before
or after each molecular dynamics integration. Hook functions are designed for either controlling the
simulation, or as in this case, recording and analysing various quantities during the simulation.

 NoteNote

For an example on how to use hook functions to modify the simulation, see the tutorial: Young’s
modulus of a CNT with a defect

To use a hook function a Python object that implements the ‘__call__’ function must first be added. The
arguments passed to this function are:

step: The step number that the simulation is up to when the function is called

time: The amount of time that has elapsed in the simulation so far

configuration: A BulkConfiguration object containing the current structure

forces: An array of the forces on each atom

stress: The stress tensor for the current structure

Using these values it is possible to create many custom analysis and data recording methods. In the
present case the pressure tensor needs to be recorded. This can be done by the PressureRecordingUtility
class defined in the script below.

15/23

Define the class that does the analysis for the MD simulation
class PressureRecordingUtility:
 ''' Calculate and record the volume and pressure tensor at each step '''

 def __init__(self):
 ''' Initialse the arrays used to store the data '''
 self._time_list = []
 self._volume_list = []
 self._pressure_list = []

 def __call__(self, step, time, configuration, forces, stress):
 ''' Function called at each step that calculates and records the pressure tensor '''

 # Add the current time onto the list
 self._time_list.append(time)

 # Get the cell volume and add that to the list too
 volume = configuration.bravaisLattice().unitCellVolume()
 self._volume_list.append(volume)

 # Get the velocity component of the pressure tensor
 velocity = configuration.velocities()
 masses = configuration.atomicMasses()
 velocity_tensor = ((velocity.reshape(-1,3,1) * velocity.reshape(-1,1,3)) * masses.reshape(-1,1,1)).

 # Construct the pressure tensor
 pressure_tensor = (velocity_tensor/volume) - stress

 # Add the pressure tensor to the list
 self._pressure_list.append(pressure_tensor)

 def times(self):
 ''' Function that returns the list of times saved during the simulation '''
 return Units.PhysicalQuantity(self._time_list)

 def volumes(self):
 ''' Function that returns the list of volumes saved during the simulation '''
 return Units.PhysicalQuantity(self._volume_list)

 def pressure_tensors(self):
 ''' Function that returns the list of pressure tensors saved during the simulation '''
 return Units.PhysicalQuantity(self._pressure_list)

Paste this code at the top of the simulation script and then save the edited script.

Using the hook function in the molecular dynamics simulationUsing the hook function in the molecular dynamics simulation

Now that an appropriate hook function is defined, QuantumATKQuantumATK needs to be told how to use this function
during the simulation.

Find the section of the script where the final production phase of the molecular dynamics calculation is
carried out. At the top of this section add the following line:

pressureRecorder = PressureRecordingUtility()

This line declares an instance of the class used to record the pressure data, allocating a memory space in
which to store it.

Now the MolecularDynamicsMolecularDynamics call needs to be changed to add the hook function. Edit this function call to
include the argument:

16/23

post_step_hook=pressureRecorder

This tells QuantumATKQuantumATK to use the pressureRecorder instance of the PressureRecordingUtility to run and
store the data at each step.

 NoteNote

The MolecularDynamicsMolecularDynamics function supports arguments pre_step_hook and post_step_hook for running
the hook function before or after the molecular dynamics integration step respectively.

Finally the data collected by the pressureRecorder object needs to be written out to a file for later
processing. This can be done by writing the data to a hdf5 file. To do this add the following code to the
end of the script.

data_file = 'md_methanol_data.hdf5'
temperature = 300 * Kelvin

nlsave(data_file, pressureRecorder.times(), "Time")
nlsave(data_file, pressureRecorder.pressure_tensors(), "Pressure")
nlsave(data_file, pressureRecorder.volumes(), "Volume")
nlsave(data_file, pressureRecorder.volumes().mean(), "Volume_Average")
nlsave(data_file, temperature, "Temperature")
nlsave(data_file, md_trajectory.timeStep(), "Time_Step")

Save the edited script.

Running the calculationRunning the calculation

All of the necessary parts of the script are now in place. The script can be sent to the Job ManagerJob Manager and
run by using the icon.

Analyzing the resultsAnalyzing the results

Viewing the change in pressureViewing the change in pressure

When using the NPT ensemble, it is important to check how the pressure was controlled during the
simulation. Ideally the pressure should average out to the target value over the course of the simulation. If
this does not happen a longer equilibration or simulation time may be needed.

When the NPT ensemble is used the pressure is written to the HDF5 file by default. To visualise this
pressure a script can be used to read it from the HDF5 file and plot it. To do this open the EditorEditor using the

 and paste in the following script.

17/23

import pylab

Read in the existing trajectory to ge the data
trajectory_file = "Production_Trajectory.hdf5"
trajectory = nlread(trajectory_file, MDTrajectory)[-1]
time = trajectory.times()
pressure = trajectory.pressures()

Set the average and target pressures
p_tot_avg = numpy.cumsum(pressure.inUnitsOf(GPa)) * GPa / (numpy.arange(pressure.shape[0])+1)
p_target = numpy.ones(pressure.shape[0]) * Pa

Plot the resulting pressure and average pressure
pylab.figure()
pylab.plot(time.inUnitsOf(picosecond), pressure.inUnitsOf(GPa), label='Pressure (GPa)', linewidth=0.5)
pylab.plot(time.inUnitsOf(picosecond), p_tot_avg.inUnitsOf(GPa), label='P Average', linewidth=2.0)
pylab.plot(time.inUnitsOf(picosecond), p_target.inUnitsOf(GPa), label='P Target', linewidth=2.0)
pylab.xlabel('Time (ps)')
pylab.ylabel('Pressure (GPa)')
pylab.legend()
pylab.show()

The script can also be directly downloaded here.  pressure_analysis.py

Run this script by sending it to the Job ManagerJob Manager. The script should display a graph similar to the one
below.

 TipTip

Analysis scripts like this can also be run from the command line using the atkpythonatkpython command

18/23

Note that during the dynamics simulation the pressures swing by approximately 0.2GPa. These large
pressure changes are typical for molecular dynamics simulations. What is important is that as the
simultion runs the average pressure converges to the target pressure of 0.1MPa.

Calculating the viscosity from the Einstein relationshipCalculating the viscosity from the Einstein relationship

Using the data collected by the hook function during the molecular dynamics simulation, it is possible to
calculate and visualise an estimate of the viscosity.

This can be done by using an ATKPythonATKPython script. Open a new script in the EditorEditor and paste in the following
script.

19/23

import pylab
import scipy

Read the data that is stored in the HDF5 file from the simulation
data_file = 'md_methanol_data.hdf5'
time = nlread(data_file, object_id="Time_8")[-1]
pressure_tensor = nlread(data_file, object_id="Pressure_8")[-1]
volume_avg = nlread(data_file, object_id="Volume_Average_8")[-1]
temperature = nlread(data_file, object_id="Temperature_8")[-1]
time_step = nlread(data_file, object_id="Time_Step_8")[-1]

Set up the calculation to create 100 time based estimates of the viscosity
N = pressure_tensor.shape[0]
N_steps = 101
skip = int(N/100)
time_skip = time[::skip]

Calculate the off-diagonal elements of the pressure tensor
P_shear = numpy.zeros((5,N), dtype=float) * Joule / Meter**3
P_shear[0] = pressure_tensor[:,0,1]
P_shear[1] = pressure_tensor[:,0,2]
P_shear[2] = pressure_tensor[:,1,2]
P_shear[3] = (pressure_tensor[:,0,0] - pressure_tensor[:,1,1]) / 2
P_shear[4] = (pressure_tensor[:,1,1] - pressure_tensor[:,2,2]) / 2

At increasing time lengths, calculate the viscosity based on that part of the simulatino
pressure_integral = numpy.zeros(N_steps, dtype=numpy.float) * (Second * Joule / Meter**3)**2
for t in range(1,N_steps):
 total_step = t*skip

 for i in range(5):
 integral = scipy.integrate.trapz(
 y = P_shear[i][:total_step].inUnitsOf(Joule/Meter**3),
 dx=time_step.inUnitsOf(Second)
)
 integral *= Second * Joule / Meter**3
 pressure_integral[t] += integral**2 / 5

Finally calculate the overall viscosity
Note that here the first step is skipped to avoid divide by zero issues
kbT = boltzmann_constant * temperature
viscosity = pressure_integral[1:] * volume_avg / (2*kbT*time_skip[1:])

Print the final viscosity
print("Viscosity is {} cP".format(viscosity[-1].inUnitsOf(millisecond*Pa)))

Display the evolution of the viscosity in time
pylab.figure()
pylab.plot(time_skip[1:].inUnitsOf(ps), viscosity.inUnitsOf(millisecond*Pa), label='Viscosity')
pylab.xlabel('Time (ps)')
pylab.ylabel('Viscosity (cP)')
pylab.legend()
pylab.show()

The script can also be directly downloaded here.  viscosity_analysis.py

This script reads in the saved data from the HDF5 file saved from the hook function. It then calculates the
viscosity using the Einstein relationship given in the theory section. Note that the integral is averaged over
the 5 unique off-diagonal components of the pressure tensor,

,
,
,

 and

Pxy

Pyz

Pxz
Pxx−Pyy

2

−

20/23

. The script then prints the final viscosity at the simulation time limit, as well as showing how the
estimate of the viscosity changed over the course of the simulation.

Below is a typical example of the viscosity calculated by the simulation. For comparison the experimental
value of the density of methanol at 298K is 0.54cP. A rigid OPLS-AA model which only includes non-
bonding interaction and keeps the configuration of each molecule fixed gives a viscosity of 0.43cP[3].
Although the example gives similar results, there is still a reasonable amount of noise in the calcuated
viscosity. Ideally this viscosity should converge to a distinct value. This indicates that more sampling of
the pressure is required to improve the accuracy of the simulation.

Calculating the viscosity from the Green-Kubo relationshipCalculating the viscosity from the Green-Kubo relationship

Similar results for the viscosity can be obtained using the Green-Kubo relationship. A script outlining how
this is achieved can be downloaded here.  green_kubo_analysis.py

Advanced users of Python are encouraged to view and run the script to understand how it works. This
script also demonstrates some of the power and flexibility of the ATKPythonATKPython platform for not only
running, but also analyzing simulations.

Extending the resultsExtending the results

Running more independent trajectoriesRunning more independent trajectories

In the previous section it was seen that more simulations need to be done in order improve the accuracy
of the estimated viscosity.

Pyy−Pzz

2

21/23

In QuantumATKQuantumATK simulations can be easily repeated by placing them within Python loops. In the case of
methanol one strategy is to loop over both the equilibration and production phases of the simulation. As
the velocities are re-randomised at the start of the equilibration phase this generates a series of
independant trajectories. From these not only the average viscosity but also the error in the average
viscosity can be easily estimated using standard statistical methods.

To loop over calculations in Python the code to be repeated can be placed in a for loop. To loop the
viscosity calculation 30 times to produce different trajectories the simulation code needs to be placed in a
for loop such as:

for loop in range(30):
 # Molecular dynamics simulation commands

Futher commands outside the loop

 NoteNote

One of the important features of Python is that it uses indentation to determine the extent of code
blocks. This determines which lines are inside or outside loops and logical statements. The
indentation in the above example is how you distinguish code from inside or outside a Python loop.

The only other necessary change in the script to create several trajectories is to modify how the output is
done. In HDF5, files writing data with the same text descriptor overwrites the previous data. Unique
descriptors are therefore needed. This is simply done by including the looping variable (in the above case
the variable loop) into the name. This is done by changing the file-writing code to

data_file = 'md_methanol_data.hdf5'
temperature = 300

nlsave(data_file, pressureRecorder.times(), "Time_"+str(loop))
nlsave(data_file, pressureRecorder.pressure_tensors(), "Pressure_"+str(loop))
nlsave(data_file, pressureRecorder.volumes(), "Volume_"+str(loop))
nlsave(data_file, pressureRecorder.volumes().mean(), "Volume_Average_"+str(loop))
nlsave(data_file, temperature, "Temperature_"+str(loop))
nlsave(data_file, md_trajectory.timeStep(), "Time_Step_"+str(loop))

To read in the data from each trajectory for analysis the names need to be changed in the nlread
commands in the same way.

Improving the accuracyImproving the accuracy

To demonstrate how the accuracy of the simulation can be improved using multiple runs, the simulation
was repeated 30 times. The average obtained from these simulations was 0.41cP, with a standard error
of 0.05cP. The graph below shows the change in the average viscosity and the standard error with the
number of simulations.

22/23

Next 

ReferencesReferences

[1]
B. Hess: Determining the shear viscosity of model liquids from molecular dynamics simulations. J. Chem.
Phys. 116, 209 (2016)

[2]
S. H. Jamali, R. Hartkamp, C. Bardas, J. Sohl, T. J. H. Vlugt, O. A. Moultos: Shear viscosity computed from
the finite-size effects of self-diffusivity in equilibrium molecular dynamics. J. Chem. Theory. Comput. 14,
5959 (2018)

[3] (1,2)
D. Gonzalez-Salgado, C. Vega: A new intermolecular potential for simulations of methanol: The
OPLS/2016 model. J. Chem. Phys. 145, 034508 (2016)

[4]
W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives: Development and Testing of the OPLS All-Atom Force
Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 118, 11225
(1996) 118,

 Previous

© Copyright 2023 Synopsys, Inc. All Rights Reserved.

23/23

	Table of Contents
	Viscosity in liquids from molecular dynamics simulations
	Theory
	Molecular viscosity
	Force fields

	Computational procedure
	Building the initial methanol configuration
	Adding the forcefield to the calculation
	Atom Tags
	Bonding Terms
	Angle Terms
	Torsion Terms
	Van der Waals Terms
	Electrostatic Terms

	Relaxing the starting structure
	Optimizing the structure
	Obtaining the right density

	Equilibrating the structure
	Setting the production calculation
	Modifying the script
	Adding the torsion terms
	Defining the hook function
	Using the hook function in the molecular dynamics simulation

	Running the calculation

	Analyzing the results
	Viewing the change in pressure
	Calculating the viscosity from the Einstein relationship
	Calculating the viscosity from the Green-Kubo relationship

	Extending the results
	Running more independent trajectories
	Improving the accuracy

