
1
2
2
3
5
7
8

Table of Contents

Table of Contents
Determination of low strain interfaces via geometric matching

Method description
Input and output description
Example 1: Lattice match between two bulk systems
Example 2: Lattice match between a bulk system with a predefined surface
References

1/9

Downloads & LinksDownloads & Links

 PDF version
Interface Builder
 InAs.py
 Al.py
 match_InAs_Al.py
 match_InAs111_Al.py

Docs » Tutorials » Complex interfaces » Determination of low strain interfaces via geometric matching

Determination of low strain interfaces via geometricDetermination of low strain interfaces via geometric
matchingmatching

Version:Version: 2017.1

This tutorial introduces the new GeneralizedLatticeMatchGeneralizedLatticeMatch method for combining two bulk crystals into an
interface.

On many occasions, one is interested in creating a realistic interface between two materials, even without
having precise structural informations on the two surfaces that form the interface. The
GeneralizedLatticeMatchGeneralizedLatticeMatch method facilitates this process, by automatically finding all the possible
interface supercells between the two crystals based only on their bulk crystalline structure. The method is
an optimized version of the algortihm described in [1]. Compared to the lattice-matching method used in
the Interface BuilderInterface Builder, described in Interface Builder, the present method is unbiased as it considers all the
possible surfaces of the two crystals forming the interface.

A number of structural parameters are calculated for each interface, which allows one to easily analyze
the matching pattern and choose the most appropriate interface to be used for further studies. The
structure of the desired interface can then be easily created using the Interface BuilderInterface Builder implemented in
QuantumATKQuantumATK.

Method descriptionMethod description

The following describes in the main steps of the algortihm used in the GeneralizedLatticeMethodGeneralizedLatticeMethod method,
which is very similar to that used in the Interface BuilderInterface Builder (see Interface Builder).

1. Initially, the possible surface vectors
 of the first of the two materials forming the interface are constructed, starting from a linear

 QuantumATKQuantumATK

 Try it!

 QuantumATK

 Contact

[a1, a2]

2/9

combination of the Bravais vectors of the primitive cell:

and by a subsequent projection of the resulting vectors from
 to
. A similar procedure is applied to construct the surface vectors

 of the second surface. As it will be shown in the Section Input and output description, the
number of generated surface cells can be limited by specifying:

The maximum value of the Miller indexes
 that define each surface;

The maximum length of the lattice vectors
 and
.

2. Each couple of surface cells is matched by using the same lattice-match method as used in the
Interface BuilderInterface Builder, and described in the technical note Interface Builder.

3. The average strain is then calculated as:

where
,
 and
 are the components of the 2D strain tensor, as defined in the technical note Interface Builder.

 NoteNote

Notice that this definition of the average strain differs from that used in the Interface Builder. The
present definition of strain is more appropriate for the present method as it is an invariant of the strain
tensor.

Input and output descriptionInput and output description

In order to use the GeneralizedLatticeMatch method one can set up a simple script as follows:

a1 =

3

∑
i=1 ciui ci ∈ Z,

a2 =

3

∑
i=1 c′

iui c′
i ∈ Z,

R3

R2

[b1, b2]

[h, k, l]

[a1, a2]
[b1, b2]

ε̄ = √ ε2
11 + ε2

22 + ε11ε22 + ε2
12

4

ϵ11

ϵ22

ϵ12

3/9

 1 # Read the BulkConfiguration of the primitive cell of the
 2 # first material
 3 configuration_1 = nlread('InAs.py',BulkConfiguration)[-1]
 4 # Read the BulkConfiguration of the primitive cell of the
 5 # second material
 6 configuration_2 = nlread('Al.py',BulkConfiguration)[-1]
 7
 8 # Run the GeneralizedLatticeMatch method
 9 generalized_lattice_match = GeneralizedLatticeMatch(
10 configuration_1,
11 configuration_2,
12 max_strain=0.02,
13 maximum_miller_index=3,
14 longest_surface_lattice_vector=50*Angstrom,
15 max_surface_area=200.0*Angstrom**2,
16 user_given_miller_index=None
17)

The script reads two input files, each one containing a BulkConfiguration of the bulk primitive cell of one
of the two materials that form the interface. Then, it applies the GeneralizedLatticeMatch method on these
two structures. A number of input parametersinput parameters can be set to control the precision and the extent of the
search for possible interface supercells. The full list of input parameters is:

configuration_1 : BulkConfiguration of the bulk primitive cell of the first material.

configuration_2 : BulkConfiguration of the bulk primitive cell of the second material.

max_strain : Maximum strain applied to each of the two surfaces.

maximum_miller_index : Maximum value of the Miller indexes
 that define each of the two surfaces.

longest_surface_lattice_vector : Maximum length of each surface lattice vector
 and
.

max_surface_area : Maximum value of the surface area of the interface supercell.

user_given_miller_index : Predefined Miller indexes of the surface of configuration_1 .

 NoteNote

When the parameter user_given_miller_index is set to a value different than None , the search for
the possible surfaces is restricted to the second material, whereas the surface of the first material
is kept fixed. This option will be used in Example 2: Lattice match between a bulk system with a
predefined surface.

After the possible matches are calculated, the matching results are printed directly in the QuantumATK
log file of the calculation. The matches will be listed in order of increasing strain, together with a number
of output parameters that characterize each match.

+--+
| A B Strain Atoms Area Aspect Angle Rotation |
+--+
[1 0 0] >-< [1 0 0] 0.000110 29 72.9 1.0 90.0 0.0
[2 2 1] >-< [1 0 0] 0.000110 23 163.9 2.2 153.4 26.6
[3 3 2] >-< [1 1 1] 0.004030 28 170.9 1.2 162.6 60.3

The output parameters are:

[h, k, l]

[a1, a2]
[b1, b2]

4/9

A : Miller indexes
 of the first surface.

B : Miller indexes
 of the second surface.

Strain : Maximum strain of the two surfaces.

Atoms : Total number of atoms in the interface supercell.

Area : Surface area of the interface supercell.

Aspect : Aspect ratio between two surface vectors of the interface supercell. The ratio is
calculated by taking the largest vector at the numerator.

Angle : Angle between the two vectors of the interface supercell.

Rotation : Rotation between the two surfaces in the interface supercell.

Example 1: Lattice match between two bulk systemsExample 1: Lattice match between two bulk systems

In this first example, you will calculate the possible matches between indium arsenide and aluminum.

To obtain the structure file containing the BulkConfiguration of bulk InAs, open QuantumATKQuantumATK, go to the
BuilderBuilder and click on Add ‣ From Database…. In the DatabaseDatabase, select the primitive cell of bulk InAs shown
in the figure below, add it to the StashStash by clicking on the button.

Repeat the same procedure to add to the StashStash the structure of the primitive cell of bulk Al, which is
shown in the figure below.

[h, k, l]

[h, k, l]

5/9

In the StashStash, save the two configurations by right-clicking on each structure and selecting ‘Save as’.
Alternatively, you can download the two files from here: InAs.py, Al.py.

Set up the script for the GeneralizedLatticeMatch method as shown below:

 1 # Read the BulkConfiguration of the primitive cell of the
 2 # first material
 3 configuration_1 = nlread('InAs.py',BulkConfiguration)[-1]
 4 # Read the BulkConfiguration of the primitive cell of the
 5 # second material
 6 configuration_2 = nlread('Al.py',BulkConfiguration)[-1]
 7
 8 # Run the GeneralizedLatticeMatch method
 9 generalized_lattice_match = GeneralizedLatticeMatch(
10 configuration_1,
11 configuration_2,
12 max_strain=0.02,
13 maximum_miller_index=3,
14 longest_surface_lattice_vector=50*Angstrom,
15 max_surface_area=200.0*Angstrom**2,
16 user_given_miller_index=None
17)

Alternatively, you can download the script from here: match_InAs_Al.py

In this example, the scan will be performed by considering surfaces with a maximum strain of 0.02, with
Miller indexes

, with a maximum length of the lattice vectors of 50 Å, and with a upper threshold for the
surface area of 200 Å .

Run the script in the terminal as atkpython match_InAs_Al.py > match_InAs_Al.log . The output will look as
shown below. There are several possible matches, so for briefness only the first 20 matches are shown.

h, k, l ≤ 3
2

6/9

+--+
| |
| Atomistix ToolKit 2017.1 [Build ce08f12] |
| |
+--+

 |--|
Miller planes for A : ==

 |--|
Miller planes for B : ==

 |--|
Matching Miller planes : ==
+--+
| A B Strain Atoms Area Aspect Angle Rotation |
+--+
[1 0 0] >-< [1 0 0] 0.000110 29 72.9 1.0 90.0 0.0
[2 2 1] >-< [1 0 0] 0.000110 23 163.9 2.2 153.4 26.6
[3 3 2] >-< [1 1 1] 0.004030 28 170.9 1.2 162.6 60.3
[3 1 1] >-< [2 1 1] 0.004030 10 120.8 1.7 90.0 0.0
[3 1 1] >-< [3 1 1] 0.004250 16 120.8 1.7 106.8 33.6
[3 3 1] >-< [3 3 1] 0.004250 16 158.8 2.2 102.9 0.0
[3 3 1] >-< [3 3 1] 0.005470 13 158.8 2.2 102.9 0.0
[3 1 1] >-< [3 1 1] 0.005470 13 120.8 1.7 106.8 33.6
[2 1 1] >-< [2 1 1] 0.005470 17 178.5 2.4 90.0 0.0
[2 1 0] >-< [2 1 0] 0.005470 13 162.9 1.2 114.1 0.0
[1 1 1] >-< [1 1 1] 0.005470 13 63.1 1.0 120.0 60.0
[1 1 0] >-< [1 1 0] 0.005470 17 103.0 1.4 90.0 0.0
[1 0 0] >-< [1 0 0] 0.005470 13 72.9 1.0 90.0 0.0
[1 0 0] >-< [2 2 1] 0.005470 7 72.9 1.0 90.0 0.0
[3 2 2] >-< [1 1 1] 0.005940 23 150.2 1.2 157.6 60.5
[1 0 0] >-< [2 1 1] 0.006130 19 182.2 3.9 39.8 0.6
[3 1 1] >-< [1 1 0] 0.007160 18 151.0 1.7 73.2 22.6
[3 1 1] >-< [1 0 0] 0.007730 19 120.8 1.7 90.0 0.0
[3 2 2] >-< [3 1 1] 0.008250 13 150.2 2.3 115.9 35.2
[1 0 0] >-< [1 1 0] 0.008420 28 200.4 2.2 79.7 38.2

Notice how the match with the least strain is that between the
 surface of InAs and the
 surface of Al.

Example 2: Lattice match between a bulk system with a predefinedExample 2: Lattice match between a bulk system with a predefined
surfacesurface

In some cases, one could be interested in finding the possible matches of a bulk material to a given
surface. In this second example, you will investigate how to find the possible matches of bulk aluminium
to the InAs(111) surface. InAs nanowires with

-oriented facets have been synthesized in Ref. [2], and it has been demonstrated experimentally that
-oriented Al layers can be grown on this surface.

Use the same structure files as in Example 1: Lattice match between two bulk systems, and setup the
script for the GeneralizedLatticeMatch calculation as follows:

⟨100⟩
⟨100⟩

⟨111⟩
⟨111⟩

7/9

 1 # Read the BulkConfiguration of the primitive cell of the
 2 # first material
 3 configuration_1 = nlread('InAs.py',BulkConfiguration)[-1]
 4 # Read the BulkConfiguration of the primitive cell of the
 5 # second material
 6 configuration_2 = nlread('Al.py',BulkConfiguration)[-1]
 7
 8 # Run the GeneralizedLatticeMatch method
 9 generalized_lattice_match = GeneralizedLatticeMatch(
10 configuration_1,
11 configuration_2,
12 max_strain=0.02,
13 maximum_miller_index=3,
14 longest_surface_lattice_vector=50*Angstrom,
15 max_surface_area=200.0*Angstrom**2,
16 user_given_miller_index=(1,1,1)
17)

Notice how the user_given_miller_index option, highlighted in yellow, has now been set to
user_given_miller_index=(1,1,1) . Therefore, in this case only the matches of bulk Al to the InAs(111)

surface will be considered. You can also download the script from here: match_InAs111_Al.py

Run the script in the terminal as atkpython match_InAs111_Al.py > match_InAs111_Al.log . The output will
look as shown below. Notice how there are fewer possible matches than those in the output of Example
1: Lattice match between two bulk systems. This is because only one surface is now considered for the
material denoted A .

+--+
| |
| Atomistix ToolKit 2017.1 [Build ce08f12] |
| |
+--+

 |--|
Miller planes for B : ==

 |--|
Matching Miller planes : ==
+--+
| A B Strain Atoms Area Aspect Angle Rotation |
+--+
[1 1 1] >-< [1 1 1] 0.005470 13 63.1 1.0 120.0 60.0
[1 1 1] >-< [3 3 1] 0.010100 17 142.0 1.2 46.1 18.4
[1 1 1] >-< [2 1 0] 0.010710 15 110.4 4.0 30.0 5.9
[1 1 1] >-< [3 1 1] 0.011070 26 110.4 2.6 19.1 77.9
[1 1 1] >-< [3 1 1] 0.012770 15 110.4 2.6 19.1 77.9
[1 1 1] >-< [1 1 0] 0.013260 24 126.2 2.6 40.9 12.1
[1 1 1] >-< [1 0 0] 0.014880 23 126.2 1.7 8.2 1.1
[1 1 1] >-< [2 2 1] 0.014880 13 126.2 2.3 10.9 31.1
[1 1 1] >-< [3 2 1] 0.016000 18 189.3 2.6 26.3 75.4
[1 1 1] >-< [3 1 2] 0.016000 18 189.3 3.5 19.1 44.6
[1 1 1] >-< [2 1 0] 0.016150 13 110.4 4.0 30.0 5.9
[1 1 1] >-< [2 1 1] 0.016420 9 78.9 2.9 30.0 20.8
[1 1 1] >-< [1 1 0] 0.016510 19 126.2 2.6 40.9 12.1
+--+

In this case, the match to the InAs(111) surface with the lowest strain is that with the Al(111) surface,
which is in agreement with the experimentally measured structure reported in Ref. [2].

ReferencesReferences

[1]

8/9

Next

Line Jelver, Peter Mahler Larsen, Daniele Stradi, Kurt Stokbro, and Karsten Wedel Jacobsen.
Determination of low-strain interfaces via geometric matching. Phys. Rev. B, 96:085306, Aug 2017.
doi:10.1103/PhysRevB.96.085306.

[2] (1,2)
P. Krogstrup, N. L. B. Ziino, W. Chang, S. M. Albrecht, M. H. Madsen, E. Johnson, J. Nygård, C. M. Marcus,
and T. S. Jespersen. Epitaxy of semiconductor–superconductor nanowires. Nature Materials, 14:400–
406, 2015. doi:10.1038/nmat4176.

 Previous

© Copyright 2023 Synopsys, Inc. All Rights Reserved.

9/9

	Table of Contents
	Determination of low strain interfaces via geometric matching
	Method description
	Input and output description
	Example 1: Lattice match between two bulk systems
	Example 2: Lattice match between a bulk system with a predefined surface
	References

