
1
2
2
3
3
4
4
4
6

7
10
16

Table of Contents

Table of Contents
Spin Transfer Torque

Introduction
Application in Random Access Memory (RAM)
Theory

Getting Started
Collinear Initial State
Noncollinear State: 90° Spin Rotation

Visualizations

Calculate the STT
Angle Dependence
References

1/16

Downloads & LinksDownloads & Links

 PDF version
 para.py
 theta-90.py
 stt.py
 angles.py
Basic QuantumATK Tutorial
ATK Reference Manual

Docs » Tutorials » Spintronics » Spin Transfer Torque

Spin Transfer TorqueSpin Transfer Torque

Version:Version: 2016.3

In this tutorial you will learn about the spin transfer torque (STT) and how to calculate the STT in magnetic
tunnel junctions.

We will use a simple model of such a tunnel junction; a magnetic carbon-chain device. The QuantumATK
package offers a convenient analysis object for calculating STT linear-response coefficients at zero bias,
but you will also calculate the STT using finite-bias calculations and compare results to those obtained
using linear response.

IntroductionIntroduction

Spin transfer torque occurs in situations where a current of spin-polarized carriers from the left part of a
device with a particular polarization (given by the unit vector

) enters the right part of the device with a different magnetization direction (given by the unit vector
). When the electrons incoming from the left side enter the right magnetic part, they will eventually be

polarized along
, meaning that the right magnetic domain has exerted a torqueexerted a torque on the electrons in order to rotate their

spin angular momentum. However, due to conservation of angular momentum, the electrons exert an
equal but opposite torqueequal but opposite torque on the right magnetic domain – the spin transfer torque. Note that a
noncollinear description of electron spin is needed to study this effect!

 QuantumATKQuantumATK

 Try it!

 QuantumATK

 Contact

S1
S2

S2

2/16

Application in Random Access Memory (RAM)Application in Random Access Memory (RAM)

The spin transfer torque can be used to modify the orientation of a magnetic layer in a magnetic tunnel
junction (MTJ) by passing a spin-polarized current through it, and can therefore be used to flip the active
elements in magnetic random-access memory (MRAM).

TheoryTheory

There are two principally different ways to calculate STT from atomic-scale models:

1. The STT can be found from the divergence of the spin current density,
, which in QuantumATK can be directly calculated using Green’s function methods.

2. Another way to calculate the STT, here denoted
, is from the expression

, where
 is the non-equilibrium contribution to the density matrix,

 is a vector of Pauli matrices, and
 is the exchange-correlation magnetic field.

Method 2 will be used in this tutorial. We can either calculate
 from the difference between finite-bias and zero-bias calculations,

, or we can estimate it using linear response theory,
, where

 is the retarded/advanced Green’s function,
 is the left-electrode coupling operator,

 is the bias voltage, and
 is the electron charge. The expression for the STT given in method 2 above is then evaluated in real

space. See the related technical note for more information:  TechNote.pdf.

∇ ⋅ Is

T
T = Tr(δρneqσ × Bxc)
δρneq

σ

Bxc

δρneq
δρneq = ρneq − ρeq

δρneq = (GrΓLGa)qU

Gr/a

ΓL
U
q

3/16

ATK implements a convenient analysis objectanalysis object for calculating the spin transfer torque using method 2 in
the linear-response approximation, where the non-equilibrium density response depends linearly on the
bias.

Getting StartedGetting Started

You will here consider a device configuration consisting of a carbon chain with a gap in the middle, which
the electrons have to tunnel through. The system is highly artificial, but serves as a simple model of a
magnetic tunnelling junction.

 NoteNote

There is no need for k-point sampling in the A- and B-directions in this 1D device. However, for
commonly studied magnetic tunnelling junctions, like Fe|MgO|Fe, a very fine k-point sampling along A
and B is often needed.

Collinear Initial StateCollinear Initial State

The 1D carbon-chain device illustrated above is similar to the one used in the tutorial Introduction to
noncollinear spin, but not identical to it. Download the device configuration as an QuantumATK Python
script:  device.py.

As already mentioned, a noncollinear representation of the electron spin is needed when calculating STT.
We will use a collinear, spin-parallel ground state as initial guess for the noncollinear state. First step is
therefore a collinear calculation for the 1D device. Send the geometry to the Script GeneratorScript Generator and set
up the ATK-DFT calculation:

Set the default output filedefault output file to para.nc .

Add a New Calculator block and set the SpinSpin to Polarized. The exchange-correlationexchange-correlation functional will
automatically switch to LSDA. Change the carbon basis set to SingleZetaPolarized in order to speed up
calculations.

Add an Initial State block and select User spinUser spin in order to initialize the calculation with all carbon
atoms maximally polarized.

Save the script as para.py (it should look roughly like this:  para.py), and run the calculation using the
 Job ManagerJob Manager.

Noncollinear State: 90° Spin RotationNoncollinear State: 90° Spin Rotation

Next step is a noncollinear calculation where the spins on the left side of the tunnelling gap point in a
different direction than the spins on the right side of the gap. The basic recipe to do this is fairly simple:

1. The ATK-DFT calculator settings used in the collinear calculation, saved in para.nc , are loaded from
file and slightly adapted for the noncollinear calculation.

2. The spins in the right-hand part of the device are rotated 90° around the polar angle
.

3. The spin-parallel collinear ground state is used as initial state for the noncollinear calculation.

The QuantumATK Python script shown below implements the basic steps given above, but also runs a

θ

4/16

Mulliken population analysis for visualizing the resulting spin directions throughout the device, and
computes the electrostatic difference potential (EDP) and the transmission spectrum.

 1 # Read in the collinear calculation
 2 device_configuration = nlread('para.hdf5', DeviceConfiguration)[0]
 3
 4 # Use the special noncollinear mixing scheme
 5 iteration_control_parameters = IterationControlParameters(
 6 algorithm=PulayMixer(noncollinear_mixing=True),
 7)
 8
 9 # Get the calculator and modify it for noncollinear LDA
10 calculator = device_configuration.calculator()
11 calculator = calculator(
12 exchange_correlation=NCLDA.PZ,
13 iteration_control_parameters=iteration_control_parameters,
14)
15
16 # Define the spin rotation in polar coordinates
17 theta = 90*Degrees
18 left_spins = [(i, 1, 0*Degrees, 0*Degrees) for i in range(12)]
19 right_spins = [(i, 1, theta, 0*Degrees) for i in range(12,24)]
20 spin_list = left_spins + right_spins
21 initial_spin = InitialSpin(scaled_spins=spin_list)
22
23 # Setup the initial state as a rotated collinear state
24 device_configuration.setCalculator(
25 calculator,
26 initial_spin=initial_spin,
27 initial_state=device_configuration,
28)
29
30 # Calculate and save
31 device_configuration.update()
32 nlsave('theta-90.hdf5', device_configuration)
33
34 # ---
35 # Mulliken Population
36 # ---
37 mulliken_population = MullikenPopulation(device_configuration)
38 nlsave('theta-90.hdf5', mulliken_population)
39 nlprint(mulliken_population)
40
41 # ---
42 # Electrostatic Difference Potential
43 # ---
44 electrostatic_difference_potential = ElectrostaticDifferencePotential(device_configuration)
45 nlsave('theta-90.hdf5', electrostatic_difference_potential)
46
47 # ---
48 # Transmission Spectrum
49 # ---
50 kpoint_grid = MonkhorstPackGrid(
51 force_timereversal=False
52)
53
54 transmission_spectrum = TransmissionSpectrum(
55 configuration=device_configuration,
56 energies=numpy.linspace(-2,2,101)*eV,
57 kpoints=kpoint_grid,
58 energy_zero_parameter=AverageFermiLevel,
59 infinitesimal=1e-06*eV,
60 self_energy_calculator=RecursionSelfEnergy(),
61)
62 nlsave('theta-90.hdf5', transmission_spectrum)

5/16

A special density mixer for noncollinear calculations is employed, and the exchange-correlation is
changed to NCLDA.PZ . Note how the InitialSpin object is used to define the initial spin directions on the
calculator.

Save the script as theta-90.py and run it using the Job ManagerJob Manager – it should not take long to finish.

VisualizationsVisualizations

When the calculation finishes, the file theta-90.nc should appear in the QuantumATK Project Files list
and the contents of it should be available on the LabFloor:

 DeviceConfiguration

 MullikenPopulation

 ElectrostaticDifferencePotential

 TransmissionSpectrum

First of all, select the electrostatic difference potentialelectrostatic difference potential and plot it using the 1D Projector1D Projector in order to check
that the NEGF calculation converged to a well-behaved ground state: Project the average EDP onto the C
axis, and observe that the ground state electrostatic potential is nicely periodic in both ends of the device
toward the electrodes, as it should be, and has the expected non-periodic feature around the gap in the
middle of the device.

Next, select the Mulliken populationMulliken population analysis item and open it in the ViewerViewer. Use the Camera options
(or click) to select the ZX planeZX plane for a clear view of the spin orientations.

6/16

Calculate the STTCalculate the STT

You are now ready to use linear response (LR) theory to calculate the spin transfer torque. Open a new
Script GeneratorScript Generator window and add the Analysis from FileAnalysis from File block. Open the block and select the device
configuration saved in theta-90.nc for post-SCF analysis. Then change the Script Generator default
output file to theta-90.nc in order to save all calculated quantities in that file.

Add also the Analysis ‣ SpinTransferTorque analysis block, and open it to see the available options.
Note in particular 3 important settings:

The electron energy, with respect to the Fermi level, for which the STT will be calculated.

The STT is by default calculated for the left –> right current.

Fairly dense k-point grids are sometimes needed along periodic directions orthogonal to the transport
direction.

EnergyEnergy::

ContributionsContributions::

k-pointsk-points::

7/16

 TipTip

See the QuantumATK Manual entry SpinTransferTorque for a full description of all input parameters
for the STT calculation and all QuantumATK Python methods available on the object.

Leave all the STT options at defaults and save the script as stt.py . The script should look roughly like
this:  stt.py. Run the calculation using the Job ManagerJob Manager – it should finish in less than a minute.

The STT analysis object should now have been added to the file theta-90.nc and be available on the
QuantumATK LabFloor:

 SpinTransferTorque

 ImportantImportant

The spin transfer torque depends on the bias voltage across the electrodes, and is of course zero at
zero bias, since no current flows. The linear-response spin transfer torque (LR-STT) assumes a linear
relationship between the STT and the bias voltage

,

where

V

\mathbf{T}(V) &= V \cdot \left. \frac{\partial \bf{T}}{\partial V} \right|_{V=0}
 &= V \cdot \tau ,

8/16

 is a linear-response coefficientlinear-response coefficient.

The QuantumATK SpinTransferTorque analysis object computes the local components of the LR-STT
coefficient

, from which the small-bias STT may be calculated.

Use first the ViewerViewer to get a 3D visualization of the values of the LR-STT coefficient for
=90°: Open the Mulliken population in the Viewer, and then drag-and-drop the STT item onto the Viewer

window. The coefficient
 is represented on a 3D vector grid3D vector grid, each vector consisting of the local x-, y-, and z-components, so you

need to choose which component to visualize. Choose in this case to visualize the y-component as an
isosurface:

You can also use the 1D Projector1D Projector to visualize the STT components. Select the STT item on the LabFloor,
and click the 1D Projector plugin. Plot the x, y, and z vector components in the same plot, projected on the
C axis.

It is common to divide the STT into out-of-planeout-of-plane and in-planein-plane contributions. In the present case, the
magnetizations in the left and right electrodes point in the z- and x-directions, respectively, thus defining
the in-plane contribution as being in the XZ-plane, while the y-component gives the out-of-plane
contribution.

The two figures below show the out-of-plane and in-plane components of the LR-STT coefficient. The spin
of the current is oriented along z when entering the right part of the device, and is then turned such as to
be aligned along x. The x-component of

 is therefore non-zero only in the left-hand part of the device, while the z-component is non-zero only in
the right-hand part. The two components are in this case mirror images of each other.

τ

τ

θ

τ

τ

9/16

 TipTip

Both figures above were generated using the 1D Projector. If you right-click the plot and select
CustomizeCustomize, a dialog appears where you can customize plot details such as title, legend, colors, etc.

Angle DependenceAngle Dependence

Let us next investigate how the LR-STT coefficient depends on the angle
 in the interval 0° to 180°. What is needed is a range of range of zero-bias NEGF calculations for different

values of
, each followed by calculation of the SpinTransferTorque analysis object for that particular spin

configuration. This is most easily achieved by combining the main parts of the scripts theta-90.py and
stt.py used above:

 1 thetas = [0,10,20,30,40,50,60,70,80,100,110,120,130,140,150,160,170,180]
 2
 3 for theta in thetas:
 4 # Output data file
 5 filename = 'theta-%i.hdf5' % theta
 6
 7 # Read in the collinear calculation
 8 device_configuration = nlread('para.hdf5', DeviceConfiguration)[0]
 9
10 # Use the special noncollinear mixing scheme
11 iteration_control_parameters = IterationControlParameters(
12 algorithm=PulayMixer(noncollinear_mixing=True),
13)
14
15 # Get the calculator and modify it for noncollinear LDA
16 calculator = device_configuration.calculator()

θ

θ

10/16

16 calculator = device_configuration.calculator()
17 calculator = calculator(
18 exchange_correlation=NCLDA.PZ,
19 iteration_control_parameters=iteration_control_parameters,
20)
21
22 # Define the spin rotation in polar coordinates
23 left_spins = [(i, 1, 0*Degrees, 0*Degrees) for i in range(12)]
24 right_spins = [(i, 1, theta*Degrees, 0*Degrees) for i in range(12,24)]
25 spin_list = left_spins + right_spins
26 initial_spin = InitialSpin(scaled_spins=spin_list)
27
28 # Setup the initial state as a rotated collinear state
29 device_configuration.setCalculator(
30 calculator,
31 initial_spin=initial_spin,
32 initial_state=device_configuration,
33)
34
35 # Calculate and save
36 device_configuration.update()
37 nlsave(filename, device_configuration)
38
39 # ---
40 # Mulliken Population
41 # ---
42 mulliken_population = MullikenPopulation(device_configuration)
43 nlsave(filename, mulliken_population)
44 nlprint(mulliken_population)
45
46 # ---
47 # Transmission Spectrum
48 # ---
49 kpoint_grid = MonkhorstPackGrid(
50 force_timereversal=False
51)
52
53 transmission_spectrum = TransmissionSpectrum(
54 configuration=device_configuration,
55 energies=numpy.linspace(-2,2,101)*eV,
56 kpoints=kpoint_grid,
57 energy_zero_parameter=AverageFermiLevel,
58 infinitesimal=1e-06*eV,
59 self_energy_calculator=RecursionSelfEnergy(),
60)
61 nlsave(filename, transmission_spectrum)
62
63 # ---
64 # Spin Transfer Torque
65 # ---
66 kpoint_grid = MonkhorstPackGrid(
67 force_timereversal=False,
68)
69
70 spin_transfer_torque = SpinTransferTorque(
71 configuration=device_configuration,
72 energy=0*eV,
73 kpoints=kpoint_grid,
74 contributions=Left,
75 energy_zero_parameter=AverageFermiLevel,
76 infinitesimal=1e-06*eV,
77 self_energy_calculator=RecursionSelfEnergy(),
78)
79 nlsave(filename, spin_transfer_torque)

The Mulliken population and transmission spectrum are not strictly needed, but will prove useful for

11/16

further analysis later on. Notice that the case
=90° is skipped because that calculation was already done above.

Download the script,  angles.py, and run it using the Job ManagerJob Manager – it may take up to 30 minutes to
complete.

When the job finishes you have a number of new nc-files on the QuantumATK LabFloor, each for a
particular spin angle. You may visualize the Mulliken populations to check for yourself that the spin angle
varies correctly.

Use the script  angles_plot.py to analyze and plot the results. For each angle, it sums the x-, y- and z-
components of

 in the right-hand part of the device, and plots them against the angle:

θ

τ

12/16

 1 # Prepare lists
 2 thetas = [0,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160,170,180]
 3 x = []
 4 y = []
 5 z = []
 6
 7 # Read data
 8 for theta in thetas:
 9 # Data file
10 filename = 'theta-%i.hdf5' % theta
11
12 # Read in the STT analysis object
13 stt = nlread(filename, SpinTransferTorque)[0]
14
15 # Get the STT 3D vector grid (units Bohr**-3)
16 array = stt.toArray()
17
18 # Get the index of middle position along C
19 sh = numpy.shape(array)
20 k = sh[2]/2
21
22 # Get the volume element of the STT grid.
23 dX, dY, dZ = stt.volumeElement()
24 volume = numpy.abs(numpy.dot(dX, numpy.cross(dY, dZ)))
25
26 # Integrate the vector components in the right-hand part of the device
27 stt_x = numpy.sum(array[:,:,k:,:,0])*volume*stt.unit()
28 stt_y = numpy.sum(array[:,:,k:,:,1])*volume*stt.unit()
29 stt_z = numpy.sum(array[:,:,k:,:,2])*volume*stt.unit()
30
31 # append to lists
32 x.append(stt_x)
33 y.append(stt_y)
34 z.append(stt_z)
35
36 # Convert lists to arrays
37 x = numpy.array(x)
38 y = numpy.array(y)
39 z = numpy.array(z)
40
41 # Save data for future convenience
42 import pickle
43 f = open('angles_plot.pckl', 'wb')
44 pickle.dump((thetas,x,y,z), f)
45 f.close()
46
47 # Plot results
48 import pylab
49 pylab.figure(figsize=(10,6))
50 pylab.plot(thetas, x*1e6, label='x')
51 pylab.plot(thetas, y*1e6, label='y')
52 pylab.plot(thetas, z*1e6, label='z')
53 pylab.axhline(0, color='k', linestyle=':')
54 pylab.legend()
55 pylab.xlabel(r'θ (degrees)')
56 pylab.ylabel(r'$\tau_\mathrm{right} \, \, \, (\mu eV/V)$')
57 ax = pylab.gca()
58 ax.set_xlim((-5,185))
59 ax.set_xticks(thetas)
60 pylab.savefig('angles_plot.png')
61 pylab.show()

13/16

The in-plane STT may also be compared to an analytic expression from Ref. [1]:

where
 is the spin transmission for the anti-parallel configuration,

and likewise for
. The vector

 is the direction of magnetization in the left/right part of the carbon chain.

Use the script  analytical.py to do the analysis. It computes the in-plane (
) and out-of-plane (

) components in the right-hand part of the device, and also computes
 from the analytical expression using the obtained transmission spectrum at each angle:

τ∥(θ) = 0.5 ⋅ [Tz(180∘) − Tz(0∘)]ML × (MR ×ML),

Tz(180∘) = h/(4πe)[T↑(180∘) − T↓(180∘)]

Tz(0∘)
ML/R

τ∥ = √τ2
x + τ2

z

τ⊥ = τy

τ∥

14/16

 1 # Load STT data
 2 import pickle
 3 f = open('angles_plot.pckl', 'rb')
 4 (thetas,x,y,z) = pickle.load(f)
 5 f.close()
 6
 7 # Process STT data
 8 inplane = (x**2 + z**2)**0.5
 9 outplane = y
10
11 # Analytical in-plane STT
12 transmissions = numpy.zeros(2)
13 for j,theta in enumerate([0,180]):
14 # Data file
15 filename = 'theta-%i.hdf5' % theta
16 # Read the transmission spectrum
17 transmission = nlread(filename, TransmissionSpectrum)[0]
18 # Get the energies
19 energies = transmission.energies().inUnitsOf(eV)
20 # Find the index of the Fermi level
21 i_Ef = numpy.argmin(abs(energies))
22 # Calculate the spin-transmission (Up - Down)
23 T = transmission.evaluate(spin=Spin.Up)[i_Ef]-transmission.evaluate(spin=Spin.Down)[i_Ef]
24 # Append to list
25 transmissions[j] = T
26 analytical = abs(transmissions[0]-transmissions[1])/2*numpy.sin(numpy.array(thetas)*numpy.pi/180)/(2*numpy
27
28 # Plot results
29 import pylab
30 pylab.figure(figsize=(10,6))
31 pylab.plot(thetas, inplane*1e6, label=r'τ_\parallel')
32 pylab.plot(thetas, analytical*1e6, 'o', label=r'τ_\parallel'+'(analytical)')
33 pylab.plot(thetas, outplane*1e6, label=r'τ_\perp')
34 pylab.axhline(0, color='k', linestyle=':')
35 pylab.legend()
36 pylab.xlabel(r'θ (degrees)')
37 pylab.ylabel(r'$\tau_\mathrm{right} \, \, \, (\mu eV/V)$')
38 ax = pylab.gca()
39 ax.set_xlim((-5,185))
40 ax.set_xticks(thetas)
41 pylab.savefig('analytical.png')
42 pylab.show()

15/16

Next 

The agreement between the angle-dependent calculation (blue line) and the analytical results (green
dots), obtained only from the spin transmissions in the parallel and anti-parallel configurations, is
excellent.

ReferencesReferences

[1]
I. Theodonis, N. Kioussis, A. Kalitsov, M. Chshiev, and W. H. Butler. Anomalous bias dependence of spin
torque in magnetic tunnel junctions. Phys. Rev. Lett., 97:237205, Dec 2006.
doi:10.1103/PhysRevLett.97.237205.

 Previous

© Copyright 2023 Synopsys, Inc. All Rights Reserved.

16/16

	Table of Contents
	Spin Transfer Torque
	Introduction
	Application in Random Access Memory (RAM)
	Theory

	Getting Started
	Collinear Initial State
	Noncollinear State: 90° Spin Rotation
	Visualizations

	Calculate the STT
	Angle Dependence
	References

