Table of Contents
Boron diffusion in bulk silicon

Creating the B-doped Si crystal
Optimize the Si bulk lattice
Build the B-doped Si crystal structure
Setup the script

Running the AKMC simulation
Details of the script
Running the AKMC job

Analyzing the results
Inspecting the AKMC log-file
Inspecting the Markov Chain
Validating the assumed prefactor

Conclusions

Table of Contents

1/19

QuantumATK

= QuantumATK

¢ Contact

Docs » Tutorials » Materials, surfaces and chemistry » Boron diffusion in bulk silicon

Boron diffusion in bulk silicon

Version: 2016.0

Downloads & Links

& PDF version

< sib-with-akmc.py

& Slides

Basic QuantumATK Tutorial
ATK Reference Manual

In this tutorial we will use an Adaptive Kinetic Monte Carlo (AKMC) algorithm with ATK-DFT to investigate
the diffusion of a single B atom in a bulk Si lattice. You can read more about the AKMC method in the
tutorial Adaptive Kinetic Monte Carlo Simulation of Pt on Pt(100).

Boron is known to diffuse though silicon during ion beam implantation due to the presence of a large
number of defects. Furthermore, boron is most stable at substitutional lattice sites. In this tutorial we will
investigate if the B atom is mobile in a defect-free Si lattice at 300 K, with B in a substitutional lattice site
as the initial state.

Note that this tutorial requires access to a computing cluster, as the calculation time exceeds several
CPU-weeks. AKMC requires a minimum of 104-10° force and energy calculations to give meaningful
results, making the length of the individual calculation very important for the overall duration.

- e

We will need to create a bulk Si crystal with a cubic supercell with 64 atoms and then substitute one of
them with B. However, first we need to find the correct lattice constant for Si with the computational
model we will be using in this tutorial.

Creating the B-doped Si crystal

Optimize the Si bulk lattice

e Open the ¥ Builder and select Add » From Database to access QuantumATK’s database of

2/19

compounds.

e Search for “Silicon (alpha)” and add it to the stash by clicking the & icon in the lower right corner.

Database - Crystal Cupboard

File Databases Panels Windows Help

€}, silicon (alpha)

@

Name Formula Lattice Tags
Silicon (alpha) Si Face Centered Cubic (fcc) Elements Cubic Standa
Description ® Configuration 3]

Si (Silicon (alpha))
Chemical formula: Si
Lattice

¢ Face Centered Cubic (fcc)
*a=5.4306 Angstrom

Svmmekrv information

G

* Send the configuration to the @ Script Generator (use the [icon for this), and add the following
blocks to the script:

° New Calculator

o OptimizeGeometry

Then change the default output file to bulk si.hdfs .

3/19

Script Generator(2) - Silicon (alpha).py*
File Edit Windows Help

Blocks Script

New Calculator Bulk

New Calculator
[=) Analysis From File

— OptimizeGeometry
Adjust Configuration

Initial State
Optimization

Analysis

Global 10
Default output file | bulk_si.nc

Script detail Minimal =

) »

Next, we will choose calculator settings that are optimized for speed rather than accuracy, in order to

show the functionality of the AKMC algorithm with DFT. Always check the accuracy of your settings when
you want publication-quality data.

¢ New Calculator
e Basis set: SingleZetaPolarized
e Exchange-Correlation: GGA.PBESto use the PBEsol functional.
k-point sampling: 4x4x4 and make sure it is shifted to gamma by ticking the three boxes found by

ticking More options. This is a very low k-point density, but equivalent to the sampling we will use
during the AKMC, where we will use only the gamma point to speed things up.

e Set the mesh cutoff to 50 Hartree.

4/19

New Calculator

Calculators Numerical Accuracy
@ ATK-DFT Density mesh cut-off | 50| |Hartree = |
() ATK-SE: Extended Hiickel Interaction max range | 20| | Ang =
() ATK-SE: Slater-Koster
Electron temperature | 300| |K |

() ATK-Classical
k-point Sampling

() Abinit
B Grid type | Monkhorst-Pack grid | Preset densities v |
() FHI-aims -
ka ks ke
Calculator settings Periodic) & =
Algorithm parameters O Density (A) 1.99603 1.99603 1.99603
Basic
Iteration control parameters @ sampling 42 4 4| .| [sync
Basle st/exchange correlation Number of symmetry reduced k-points: 36
Numerical accuracy parameters
Parallel parameters ¥ Fewer options
Poisson solver
@ shift to Gamma ™~ ™~ o~
) k-point shift 0.125 0.125 0.125

Estimate Memory Usage

e OptimizeGeometry
e Untick Constrain Lattice Vectors.

¢ Keep the fractional coordinates of Si atoms fixed:

e open Atomic Constraint Editor and select one Si atom;
e hold down ctrl while selecting the other atom and click Add tag from Selection.

e choose Fixedunder Constraint and click “OK”".

5/19

constraint. To apply constraints to

Selection button.

Motice that rigid body constraints

may not share atom indices. In this
case, table entries are displayed in
red.

Selection 0 Fixed

Cancel | [OK

Leave everything else at default in the OptimizeGeometry block and send the script to the ¢, Job
Manager to run the script. The calculation will take a few minutes.

Build the B-doped Si crystal structure
Once the calculation is finished, you can find the optimized Si bulk structure on the LabFloor.
e Select the optimized geometry and drop it on the % Builder.

¢ Make the cell cubic by clicking on Bulk Tools > Supercell, then click on Conventionaland then
Transform. Note how the number of atoms has increased to 8.

For the atom indices associated with
a given tag, change the combo box in
the Consktraint column to the desired

the current selection, press the Add

Tag Constraint

-

6/19

Builder

Edit Selection View Windows Help

floe @i Tdeodvaae

bulk_si.nc

Copy
Delete

Silicon bulk_si.nc
(alpha)

» Builders

v Bulk Tools

v

Crystal Symmetry Info
> Fit Cell

» Merge Cells

> Repeat

> Stretch Cell

¥ Supercell

Create a supercell by expressing the new cell vectors A", B', and
C' as a linear combination of the current cell vectors A, B, and C.

Atoms are added as needed to reflect the new cell size. Press
Conventional to choose the conventional cell (only available For
non-primitive Bravais lattices). Use the combo box to select from
a preset of tranformations. Press Transform to apply the current
transform.

A B C
A -1 . 1. 1.
B' 1. 1 2 1.
c 1.2 1.- 1.
Face-Centered Cubic = Transform

> Swap Axes
> Wrap

Brillouin Zone Viewer...

Ee

e To make the 64 atom cell, click Bulk Tools » Repeat and increase A, B and C to 2 before clicking Apply.

e Select the Si atom you would like to replace with B, e.g. atom number 8, close to the origin at [0.125,

0.125, 0.125] in fractional coordinates.

e (Click the Periodic Table plugin and select B in the periodic table.

Setup the script

Send the structure to the @ Script Generator, change the default output file to sib-optimized.hdf5 , and

add the following blocks to the script:
o New Calculator

o OptimizeGeometry

7/19

File Edit wWwindows Help

Blocks Script

New Calculator Bulk
New Calculator
f',g Analysis from File

OptimizeGeometry
. Adjust Configuration

11| Initial state

'%-_, Optimization

@ Analysis

Global 10
Default output file sib-optimized.nd|
Script detail Minimal =

Next, choose the following settings for the respective blocks.

¢ New Calculator:
e k-points sampling: 7x7x7, sampling only the gamma point;
e basis set: SingleZetaPolarized for Silicon and DoubleZetaPolarized for Boron;

¢ apply the same settings as before for everything else.

e OptimizeGeometry: change the convergence criterion to 0.01 eV/A, and keep the default values for
everything else.

Send the script to the .#, Job Manager and run the script.

When the job has finished after about 10 minutes, depending on hardware, we are ready to do the actual
AKMC simulation.

Running the AKMC simulation

Setting up the AKMC calculation requires using only a few lines of Python scripting, and has been
prepared in the script & sib-with-akmc.py. The different parts of the script will be explained below.

Download the script, and make sure the file name in the beginning points at the file with your optimized
BulkConfiguration.

SADDLE OPTIMIZATION . KMC

urst @ No @ YEs MD SEARCH

SETUP THE SYSTEM
_4

8/19

MINIMUM ENERGY STRUCTURE <

v

O

v

0

\J
short high temperature MD run

v
geometry optimization
v
new minimum energy geometry ?

optimize NEB between initial and new geometry

v

estimate saddle point geometry from NEB

v

saddle point optimization

v
new saddle geometry ?

g---- check saddle point connectivity to initial geometry -

calculate dynamical matrix for
initial, saddle, and final geometries

v

add new reaction mechanism
to the KMC simulation

if the maximum time has reached then:

o

A 4

not connected

------- CONFIDENCE CRITERION MET ?

©

®

FINAL CONFIGURATION

A

e et

|

R et =

Support for setting up an AKMC calculation using the Script Generator is planned for QuantumATK

2017.

Details of the script

9/19

First, we change the logging behavior of QuantumATK to the verbosity mode MinimalLog, which will
greatly reduce the information in the log file for each SCF cycle. This will improve readability of the log
files from the AKMC simulation, while leaving essential SCF information available. The optimized
configuration is then loaded from the saved .hdf5 -file.

setVerbosity(MinimallLog)

Read in configuration
bulk configuration = nlread('../sib-optimized.nc', BulkConfiguration)[-1]

For more information on how to tune the verbosity of QuantumATK logging output, see the Reference
Manual entry on setverbosity() . In particular, the options “CALCULATOR_UPDATE=False” and
“PROGRESS_BARS=False” could be relevant here; they remove all the SCF information and progress
bars from the output, respectively.

We then proceed to set up a calculator that is identical to the one used for structural relaxation, except for
the addition of the ParallelParameters functionality, which is used to ensure that just one process will be
used for each AKMC saddle search. For a bigger system, it might make sense to use more than one
process per saddle search, but the optimal distribution depends on the setup and queuing rules of your
supercomputer.

10/19

basis set = [
GGABasis.Boron DoubleZetaPolarized,
GGABasis.Silicon SingleZetaPolarized,

exchange correlation = GGA.PBES

k point sampling = MonkhorstPackGrid(
na=1,
nb=1,
nc=1,
shift to gamma=[True, True, True],
)
numerical accuracy parameters = NumericalAccuracyParameters(
k point sampling=k point sampling,
density mesh cutoff=50.0*Hartree

)

parallel parameters = ParallelParameters(
processes per saddle search=1,

)

calculator = LCAOCalculator(
basis set=basis set,
exchange correlation=exchange correlation,
numerical accuracy parameters=numerical accuracy parameters,
parallel parameters=parallel parameters,

)

bulk configuration.setCalculator(calculator)
nlprint (bulk configuration)
bulk configuration.update()

The final part of the script is the actual AKMC simulation. First, there are two blocks which check if a
previous AKMC simulation has already been run, and reuse that information if possible, or initialize new
objects if no previous results are present.

Reusing existing MarkovChain object if it already exists, otherwise a new one 1is created
if os.path.isfile('akmc markov chain.nc'):
markov_chain = nlread('akmc markov chain.nc')[0]
else:
markov_chain = MarkovChain(bulk configuration, TotalEnergy(bulk configuration).evaluate())

Reusing existing KMC object if it already exists, otherwise a new one 1is created
if os.path.isfile('akmc kmc.nc'):

kmc = nlread('akmc kmc.nc')[0]
else:

kmc = None

Next comes SaddleSearchParameters, where we restrict NEB calculations to no more than 5 images. For

11/19

this system, we expect fairly simple reactions, which will be well-described with 5 images or less. For
more complicated systems, more than 5 images per NEB might be needed. This is not a very expensive
part of the overall calculation, but we need to optimize for speed when using DFT.

Modify the default maximum number of NEB images to 5.
saddle search parameters = SaddleSearchParameters(max neb images=5)

Finally the AKMC calculation is set up, including the SaddleSearchParameters object, and then started in
the final line. For solid state systems it is often a good approximation to assume the prefactor, which is
very expensive to calculate. In this case we use a value of 10'3 s, which should be appropriate for this
system. As AKMC is a stochastic method, it is important to do enough saddle searches to ensure the
reaction space is adequately sampled. This is also why this script is designed to make additional runs
straightforward to do.

Setup the AKMC simulation.
akmc = AdaptiveKineticMonteCarlo(markov_chain,
calculator=calculator,
kmc_temperature=300*Kelvin,
md temperature=3000*Kelvin,
saddle search parameters=saddle search parameters,
constraints=[15],
kmc=kmc,
confidence=0.99,
assumed_prefactor=lel3/Second,
write searches=False,
write_kmc=True,
write_markov_chain=True,
write log=True)

Run 200 saddle searches.
akmc.run(200)

In AKMC calculations, you must constrain at least one atom to avoid drift of the system during the
high-temperature MD. However, this will introduce a slight error in the potential energy surface (PES)
close to the constrained atom(s), so the constraint(s) should in general be applied as far as possible
from where you expect transitions to happen. In this case the constraint is chosen to be an atom
exactly half a supercell away from the B atom in all directions, to minimize the impact on any reactions
involving B.

For further information on the parameters in the AKMC calculation, see for example the tutorial:
Modeling Vacancy Diffusion in Si0.5 Ge0.5 with AKMC . In the present tutorial we focus on those
features which need special attention when a DFT calculator is used.

Running the AKMC job

The script needs to run on a supercomputer, as it takes up to two full days per saddle search. In this case
we run 2x50 hours on 3 nodes, for a total of 48 cores.

If you modify the parallelization options to better fit your system and the architecture of your favorite
supercomputer, remember to leave one process for the AKMC algorithm itself. If you have N available

12/19

CPU cores, only N-1 cores are available for saddle searches.

Analyzing the results

The script generates the following output files:
e One log-file for each saddle search:

® saddle search * *.log

The central log-file for the AKMC algorithm:

® akmc_log.hdf5

A file containing the Markov Chain object:

® akmc_markov_chain.hdf5

If any KMC steps have been taken by the algorithm: A file containing the Kinetic Monte Carlo object:

® akmc_kmc.hdf5

A file containing everything sent to std out:

® sib-with-akmc.log

13/19

s

6.
4.
3.
3.
q.
3.
0o
3.
3.

'-.-"'l
L e e e N L e e e e e . e i i A L e i e T A Y

I

system on the cluster.

Inspecting the AKMC log-file

saddle_search_©0_141.1log
saddle_search_©0_136.log
saddle _search_ 0 144.1log
saddle_search_©0_1560.1log
akmc_markov_chain.nc

akmc_log.nc

saddle_search_0_
saddle_search_0_
saddle_search_0_
saddle_search_0_
saddle_search_0_
saddle_search_0_
saddle_search_0_
saddle_search_0_
saddle_search_0_
saddle search_ 0 _
saddle_search_0_
saddle_search_0_

118.
142.

149

153.

148

140.

147

139.
151.
146.
145.

155

sib-with-akmc. log

saddle_search_© 98

saddle_search_0_87.

saddle _search_0_ 82

saddle_search_0_66.

saddle_search_0_
saddle_search_0_

58.
50.

log
log
. Log
log
. Log
log
. Log
log
log
log
log
. Log

. Log

log

. Log

log
log
log

saddle_search_©_176.log
Saddle_ﬁearch_ﬂ_lTS log
saddle_search_0_174.log
saddle _search 0 173.log

In this case, no KMC steps have been taken, so there is no file named akmc kmc.hdf5 . This is also why all
the saddle search files have a 0 as the first number; they have all been started from the original initial
state. Many of the saddle search files have the same time-stamp, as they have been killed by the queuing

The AKMC log file can be most easily inspected using Text Representation... in the QuantumATK Panel

bar. This will bring up the following window:

14/19

Title: akm
Type: AEMCLog

log.nc - gID00OO

state id search number confidence

0

[B e e N e e Y e Y O e Y e Y e Y O e Y O e Y e Y e Y O e O = e O e R e Y Y Y O e R e Y e Y e Y R

0
This shows inform

0

00 =1 @ U1 s L P

a.
.00oooo0
LQooooo0
L 000000
L 000000
.0ooooo0
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.00oooo0
.00oooo0
.00oooo0
L 000000
L 000000
L 000000
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.0ooooo
.00oooo0
.00oooo0
.00oooo0
LQooooo0
L 000000
L022956
.018549
.018491
.018470

CoOoOooOooOoOoOoooOoooooooOooooooooooooooooooooooooooDoooooooDDooo

oooaoo

message
Found new state
The saddle point
Found new state
Found new state
The saddle point does not connect back teo the initial minimum.
Found new

Found new

Found new

Found new

Found new

Found new

Found new
Found new
Found new
Found new
The saddle point
Found new state
The saddle point
Found new state

The
The
The
The
The
The
The
The
The
The
The
The

saddle
saddle
saddle
saddle
saddle
saddle
saddle
saddle
saddle
saddle
saddle
saddle

state
state
state
state
state
state
state
state
state
state

point
point

point
Found new state

Found new state
The saddle point
The saddle point
The saddle point
The saddle point
Found new state
Found new state
Found new state
The saddle point
The saddle point
Found new state
The saddle point
The saddle point
Found new state
The saddle point
Found new state
The saddle point
Found new state
The saddle point
Found new state
The saddle point optimization did
Found saddle connecting teo state 3 again
Found new state

Found new state

Found new state

ation about each completed saddle search.

optimization did not converge.

does

optimizat

does
does
does
does
does

t does
t does

does
does
does

t does

does

does
does
does
does

optimizat

does

does
does

does

not

not
not
not
not
not
not
not
not
not
not
not
not

not
not
not
not

not

not
not

not

connect

ion did

ion did
connect

connect
connect

connect

optimization did

optimization did

back to the initial
not converge.

back to the initial
back to the initial
back to the initial
back to the initial
back to the initial
back to the initial
back to the initial
back to the initial
back to the initial
back to the initial
back to the initial
back to the initial
back to the initial
back to the initial
back to the initial
back to the initial

not converge.
back to the initial

back to the initial
back to the initial

back to the initial
not converge.
not converge.

not converge.

—=ogr

minimum.

minimum.

minimum.

minimum.

minimum.

minimum.

minimum.

minimum.

minimum.

minimum.

minimum.

minimum.

minimum.

minimum.

minimum.

minimum.

minimum.

minimum.

minimum.

minimum.

minimum.

e “state id” is the id number of the state, which the saddle searches are originating from - in this case
state 0, which is the original initial state.

e “search number” is the id number of the saddle search, corresponding to the second number in the

name of the log files.

e “confidence” is the confidence, on a scale from 0 to 1, that the current initial state has been adequately

sampled.

* “message” is a short message describing the result of the saddle search.

We see that many saddle searches find new states and that about as many find saddle points which are

not connected to the initial state. The former indicates that there are many saddle points with similar

barriers, while the latter indicates that the potential energy surface (PES) is somewhat complicated. The

confidence remains low because many searches discover new states, while only one search finds an

already known state. This indicates that there are many relevant states, and the algorithm thus requires

much more data before the PES has been adequately sampled around our original initial state and the
first KMC step can be performed.

15/19

Inspecting the Markov Chain

The Markov Chain is a list of all the discovered states and the connections between them. It can be
visualized using the Markov Chain analyzer plugin in the QuantumATK panel bar. In this case, all the

connections originate in the original initial state (state 0). You can view all the connections for a different

state by changing Stateto a value other than 0. You can also change the Temperatureto see how the
rates change. In this case the rates are all extremely small at 300 K, as the barriers are quite high.
However, due to the exponential dependence of the rate on 1/T, doubling the temperature to 600 K

increases the rates by about 16 orders of magnitude.

2.0
15}
;
=
g 10|
g
=
0.5}
0. 0.5 1.0 15 2.0 2.5
‘ ‘ o ‘ ’ K B b ®
Poamtinn canedinata § A
Markov Chain ID v Barrier (eV) Prefactor (1/s) Rate (1/s)
State b . 0 1.905 1.000e+13 1.009e-19
Temperature | 300 LK 1 1.970 1.000e+13 7.897e-21
Energy -11283.664 eV |2 1.963 1.000e+13 1.051e-20
D - 1.942 1.000e+13 2.332e-20
4 2.045 1.000e+13 4.448e-22

r EW.FEY

Validating the assumed prefactor

4 AR~ 4T

A C AR~

0 |-

Energy (eV)

-11281.951
-11282.240
-11282.240
-11282.187

-11282.004

FPET. LTt

»

We will now verify that the assumed prefactor used in the AKMC calculations is reasonable. We select the
transition between states 0 and 17, as it has the lowest barrier and involves atoms close to the B atom.

16/19

2.0

15}]
=
=
B L0}]
5]
=
05|]
0 0.5 1.0 15 2.0 2.5
‘ ‘ o ’ ‘ B o e | o || |2sees] W
Roartinn canrdinata § A0
Markov Chain ID Barrier (eV) Prefactor (1/s) Rate(1/s) » Energy(eV) State |-
State 0 . 17 1.901 1.000e+13 1.163e-19 -11281.957 18 | _ |
Temperature | 300 ko 1.905 1.000e+13 1.009e-19 -11281.951 1
Energy -11283.664 eV |25 1.906 1.000e+13 9.408e-20 -11281.955 26
D 1.906 1.000e+13 9.405e-20 -11281.955 20
a7 1.907 1.000e+13 9.173e-20 -11281.949 a8

LY 4 nan 4 AR~ 4T EEE LT PR 4400 407 A -

{] b

You can sort the states by each of the columns. In this case, we sorted by barrier to identify the states
with the lowest barrier. They also have the highest rates as the prefactor is identical for all transitions.

The procedure for this calculation is as follows:
e Extract the initial, saddle and final states from the Markov Chain, and optimize their geometry.

e Create a NEB configuration with more images and optimize it, first without and then with climbing
image.

e Do the actual prefactor calculation using HTSTEvent .

The first point is covered in the script: extract-neb-from-markov-chain.py . The Markov Chain object stores
the final states and saddle point states for all the discovered transitions between the known states. These
configurations can then be extracted as shown in the first lines of code below, for the initial and final
states. Afterwards, we define a calculator identical to the one used in the AKMC simulation and optimize
the geometry with a tolerance of 0.01 eV/A. This is a stricter criterion than the default in
OptimizeGeometry, but identical to the default in the AKMC simulation, which is selected to ensure
convergence of the prefactor calculation. For some systems it might be needed to converge even more
tightly.

markov_chain = nlread('akmc markov chain.nc')[0]

initial state id = 0
final state id = 17

initial conf = markov_chain.getStateConfiguration(initial state id)
final conf = markov_chain.getStateConfiguration(final state id)
& extract-neb-from-markov-chain.py

In the next script, optimize-neb-from-markov-chain.py , we create a NEB configuration based on the
minimized initial and final configurations, plus the saddle configuration as extracted from the Markov

17/19

Chain.

markov chain = nlread('akmc markov chain.nc')[0]

initial conf = nlread('initial conf.nc',BulkConfiguration)[-1]
final conf = nlread('final conf.nc',BulkConfiguration)[-1]

initial state id = 0
final state id = 17

Make the NEB configuration

saddle conf = markov chain.getSaddleConfiguration(initial state id, final state id)

configuration list = [initial conf, saddle conf, final conf]

neb_configuration = NudgedElasticBand(configuration list, image distance=1.0*Angstrom, generate_images

nlsave('neb-configuration.nc',neb_configuration)

J E:

0

Then we define a calculator identical to the one used in the AKMC simulation (not shown here), and
proceed to optimize the NEB; this is done with a regular optimization first, and then an additional one with
climbing image turned on. This optimization can take several hours, even on a multi-core machine.

neb configuration.setCalculator(calculator)

optimized neb configuration = OptimizeNudgedElasticBand(
neb_configuration,
max_forces=0.01*eV/Ang)

nlsave('optimized-neb-configuration.nc',optimized neb configuration)

ci optimized neb configuration = OptimizeNudgedElasticBand(
optimized neb configuration,

climbing image=True,

max_forces=0.01*eV/Ang)

nlsave('ci-optimized-neb-configuration.nc',ci optimized neb configuration)

& optimize-neb-from-markov-chain.py

You can also do the NEB optimization with climbing image turned on from the beginning, but this is a
less stable approach and can lead to convergence problems. Doing it in two steps, as we do here, is
slightly slower, but will be much more likely to converge without issues.

Finally, we calculate the prefactor with a simple script using HTSTEvent, reading in the fully optimized NEB
configuration.

18/19

neb_configuration = nlread('ci-optimized-neb-configuration.nc',NudgedElasticBand)[-1]

htst event = HTSTEvent(
neb configuration,
finite difference method=Central,
minimum_displacement=0.05*Angstrom,
)
nlsave('htst-event.nc', htst event)
nlprint(htst event)

<. calculate-prefactor.py

This script requires approximately 600 energy and force calculations and ran for about 2.5 hours on an 8-
core node. When it has finished, the results are found at the end of the log-file containing the std output:

| Reactant Energy: -11283.6643027 eV |
| Saddle Energy: -11281.7203394 eV |
| Product Energy: -11282.1925809 eV |
| Forward Barrier: 1.9439633 eV |
I |

I

I

Backward Barrier: 0.4722415 eV
| Forward Prefactor: 1.792e+14 1/s
| Backward Prefactor: 6.939%e+13 1/s

We see that the forward prefactor is a little more than an order of magnitude larger than the estimated
value of 103 s, while the backward prefactor is a little less than an order of magnitude off. This validates
our assumed prefactor, as this deviation from the assumption is much smaller than the many orders of
magnitude the rate can vary due to the exponential dependence on the barrier.

Conclusions

The AKMC simulations indicate that atomic boron in bulk silicon is very stable in a substitutional lattice
site, and effectively immobile at temperatures close to room temperature. A reaction rate prefactor of
10"3 s per second was assumed and later verified.

Q@ Previous Next ©

© Copyright 2023 Synopsys, Inc. All Rights Reserved.

19/19

	Table of Contents
	Boron diffusion in bulk silicon
	Creating the B-doped Si crystal
	Optimize the Si bulk lattice
	Build the B-doped Si crystal structure
	Setup the script

	Running the AKMC simulation
	Details of the script
	Running the AKMC job
	Analyzing the results
	Inspecting the AKMC log-file
	Inspecting the Markov Chain
	Validating the assumed prefactor

	Conclusions

