
1
2
2
5
8
9

10
12
13
13

Table of Contents

Table of Contents
Geometry optimization: CO/Pd(100)

Bulk palladium
Build the Pd(100) surface and relax it
Relax the CO/Pd(100) system

Rigid relaxation
Final relaxation

Relax the CO molecule
Adsorption energy

Counterpoise correction

1/16

Downloads & Links

 PDF version
 Pd_bulk.py
 Pd100.py
 Pd100_CO_rigid.py
 Pd100_CO.py
 CO.py
 adsorption_energy.py
 Pd_CO_cp.py

Basic QuantumATK Tutorial
ATK Reference Manual
Building molecule–surface systems: Benzene on Au(111)
Molecular builder

Docs » Tutorials » Materials, surfaces and chemistry » Geometry optimization: CO/Pd(100)

Geometry optimization: CO/Pd(100)

Version: 2015.1

In this tutorial you will learn how to do a geometry optimization using Fixed and Rigid constrains on the
atoms. As an example, you will study adsorption of the CO molecule on a Pd(100) surface. You will use
the ATK-DFT calculator engine and a standard GGA functional.

Specifically, you will:

1. optimize the bulk palladium crystal;
2. cleave the bulk to create the Pd(100) surface and relax it;
3. adsorb the CO molecule in the surface, and relax the system in two steps;

1. first apply Rigid constraints on atoms during an initial relaxation;
2. then apply Fixed constraints on the bottom Pd atoms in a final optimization.

4. lastly, relax the CO molecule and calculate the adsorption energy.

Bulk palladium

 QuantumATK

 Try it!

 QuantumATK

 Contact

2/16

Create a new project called “Pd100_CO” and open the Builder .

Use Add ‣ From Database to import the Pd bulk to the Stash and send the configuration to the Script
Generator using the send to button .

In the Script Generator, add the New Calculator and OptimizeGeometry blocks to the script by
double-clicking them, and change the default output file name to Pd_bulk.hdf5 .

Double-click the New Calculator block and set the following parameters in the window that opens
up:

k-point sampling: 9x9x9;

exchange-correlation: GGA-PBE functional.

Open the OptimizeGeometry block, and set the parameters as shown in the image below. In
particular:

enable stress relaxation by unticking Constrain cell;

decrease the stress tolerance to 0.005 eV/Å ;

save the relaxation trajectory by ticking Save trajectory and enter Pd_bulk.hdf5 for the trajectory
file name.

3

3/16

 Tip

It is usually a good idea to save the trajectory file. In case your geometry optimization is interrupted
you can simply restart it from one of the latest images in the trajectory. If you would like to know more
about how to restart a stopped calculation, check out the tutorial Restarting a stopped calculation.

Click OK and the OptimizeGeometry window will close.

The script is now finished. Send it to the Job Manager using the button. Save the script in the
window that appears and run the calculation. It will take a few seconds. If needed, you can download
the script here:  Pd_bulk.py.

Once the bulk relaxation is finished, the calculation output will appear on the LabFloor. The bulk
configurations with IDs glD000 and glD002 are the initial and final structures, respectively, while the
relaxation trajectory has ID glD001.

4/16

You can drag and drop these objects to the Viewer to visualize them. In the Viewer, you can check the
lattice constant by hovering the mouse on the cell boundaries. You could also check the lattice constant
in the newly formed log file.

In the following, you should of course use the relaxed bulk structure, glD002.

Build the Pd(100) surface and relax it

Drag and drop the relaxed bulk configuration to the Builder .

Open the Builders -‣ Surface (Cleave) plug-in.

Keep the default Miller indices and click Next.

Keep the default 1x1 surface lattice and click Next.

Choose a Non-periodic and normal (slab) out-of-plane cell vector, 4 slab metal layers, and 10 Å and 5
Å for the top and bottom vacuums, respectively. Click Finish to build the surface.

5/16

Send the slab structure to the Script Generator and add the New Calculator,
OptimizeGeometry and TotalEnergy blocks to the script, and set the default output file name to
Pd100.hdf5 .

6/16

Choose the following set of calculator parameters:

k-point sampling: 9x9x1 k-points;

exchange-correlation: GGA-PBE;

FFT2D Poisson solver with Neumann boundary conditions under the slab and Dirichlet boundary
conditions above the slab:

 Note

This particular set of boundary conditions along the C direction of the simulation cell is appropriate for
slab calculations, where the vacuum above the slab could in principle extend to infinity.

Open the OptimizeGeometry block and set it up for force relaxation:

save the trajectory to Pd100_traj.hdf5 ;

click Add Constraints to open the Constraints Editor;

use the mouse to select the bottom two layers of the Pd(100) surface and click Add tag from
selection. Those two atoms are now tagged “Selection 0”. Then choose the Fixed constraint for the
“Selection 0” group.

7/16

There is nothing to edit in the TotalEnergy block, so the script is now finished. Save it as Pd100.py
and execute it using the Job Manager . The calculation will take roughly one minute. If needed, you
can download the script here:  Pd100.py.

Once the Pd(100) surface has been geometry optimized, the results will appear on the LabFloor. You can
again visualize the relaxation trajectory using the Viewer .

 Tip

You can check the total energy of the relaxed Pd(100) surface by selecting the TotalEnergy object and
clicking on the Text Representation plugin. The energy is also printed in the log file.

Relax the CO/Pd(100) system

The next step is to add the CO molecule to the surface and relax the system. You should use the
CO/Pd(100) structure available here:  CO_Pd100.py. If needed, you can learn how to add a molecule to a
surface from the tutorial Building molecule–surface systems: Benzene on Au(111).

As mentioned in the introduction, you will relax the CO/Pd(100) configuration in two steps:

1. use a Rigid constraint for CO and Fixed constrain for the surface, together with a relatively low
electron density mesh cut-off, in order to get a quick idea of where the CO will be adsorbed;

2. the final relaxation step does not constrain the CO molecule and just fixes the bottom of the Pd(100)
slab.

8/16

Rigid relaxation

Transfer the provided CO/Pd(100) configuration ( CO_Pd100.py) to the Script Generator and add the
New Calculator and OptimizeGeometry blocks. Enter Pd100_CO_rigid.hdf5 for the default output file
name, and then edit the script:

In the New Calculator block, use the same settings as for the Pd(100) relaxation in the previous
section, but decrease the density mesh-cut off to 30 Hartree.

Set up the OptimizeGeometry block similarly to the one used for Pd(100), but choose a slightly
different set of constraints:

select the Fixed constraint for all atoms in the metal slab;

select the Rigid constraint for the CO molecule (add the C and O atoms to the group “Selection 1”).

9/16

 Note

The Rigid constraint on a group of atoms causes those atoms to move like a rigid body during force
optimization.

Save the script as Pd100_CO_rigid.py and run it using the Job Manager. The simulation should take
roughly 5 minutes if executed in serial. You can download the script here:  Pd100_CO_rigid.py.

 Important

If you take a look at the trajectory, you will see that the CO molecule has moved slightly away from its
initial position, but the C–O bond length has not changed, and the molecule has not rotated. This is
how the rigid constraint works.

Final relaxation

You will now perform the final geometry optimization of the CO/Pd(100) structure, starting from the result
of the previous step.

Send the configuration with ID glD002 in Pd_CO_rigid.hdf5 to the Scripter, and enter Pd_CO.hdf5 for
the default output file name.

Once again, add the New Calculation, OptimizeGeometry and TotalEnergy blocks, and edit
them similarly to what you did in the previous section. This time, however, use a 75 Hartree mesh-
cutoff for the ATK-DFT calculator, and use only a Fixed constraint for the bottom two Pd atoms:

10/16

Save the script as Pd_CO.py and execute it using the Job Manager or in a Terminal. The calculations
should take about 20 min in total, but can of course be quicker if run in parallel on more CPUs. The
script is also available here:  Pd100_CO.py.

 Tip

You can actually use the Viewer tool to monitor the progress of the geometry optimization while the
calculation is running. The trajectory object is continuously updated as new relaxations steps are
taken.

When the calculation has finished you should have a look at the full relaxation trajectory, and see how the
CO molecule has moved from a position around the hollow adsorption site on the Pd(100) surface to a
bridge site between two Pd surface atoms:

11/16

Relax the CO molecule

In order to calculate the CO adsorption energy on Pd(100) you also need to relax the isolated CO molecule.
We can obtain it following the next steps:

go to the Builder and add a new configuration using Add ‣ New Configuration;

click the Molecular Builder tool and click Fragments ‣ Carbon monoxide in the panel that opens up;

next, click the hydrogen atom in the New Configuration Stash item to substitute it for the CO fragment,
close the Molecular Builder window, and rename the Stash item to CO .

12/16

 Tip

For more details about how to use the Molecular Builder, you can check out this tutorial: Molecular
builder.

Now you just need to relax the CO atomic coordinates and compute the total energy. Send the structure to
the Script Generator and add the New Calculator, OptimizeGeometry and TotalEnergy blocks.
Enter CO.hdf5 for the default output file name, and then edit the blocks a bit:

 New Calculator: Choose the GGA-PBE functional;

 OptimizeGeometry: You may want to save the trajectory or decrease the force tolerance, but it’s not
mandatory;

Save the script as CO.py and run the calculation – it should be very fast. The script is also available for
download:  CO.py.

You will find that the C–O bond length relaxes to 1.143 Å, which matches experiments very well.

Adsorption energy

You are now ready to calculate the CO/Pd(100) adsorption energy at a full monolayer coverage,
, which is of course given by total energy differences:

You can use the Text Representation plugin to see all three total energies and then calculate
, or you can use a script to do it:  adsorption_energy.py.

The adsorption energy, calculated using PBE and the FHI pseudopotentials with a DZP basis set, is
 = –1.97 eV. However, this number is affected by the so-called basis set superposition error, so you

should proceed to the next section to correct for this.

Counterpoise correction

The basis set superposition error (BSSE) is due to the incompleteness of the LCAO basis set, and can
have a significant impact on energy differences between different sub-systems. As explained in a tutorial
(DFT-D and basis-set superposition error), the superposition of Pd and CO basis sets in the CO/Pd(100)
system can give rise to an artificial lowering of the total energy because the Pd(100) and CO sub-systems
can “borrow” basis functions from each other. The result is a too large adsorption energy.

The standard approach to neutralize the BSSE is to apply a so-called counterpoise correction. In

ΔE

ΔE = Eproducts − Ereactants = EPd(100)/CO − EPd(100) − ECO

ΔE

ΔE

13/16

QuantumATK, this is done using the counterpoiseCorrected .

You should therefore calculate the counterpoise (CP) corrected total energy for the CO/Pd(100) system in
order to compute the CP corrected adsorption energy:

Use the script shown below (can be downloadad here:  Pd_CO_cp.py). The script reads in the previously
relaxed CO/Pd(100) configuration and the calculator that was used, and creates a new calculator that
applies the CP correction. The configuration is then relaxed and the total energy is calculated.

Run the script using the Job Manager or in a Terminal. It should perform 4 very small relaxation steps, and
finish within 10 minutes. The CP correction will increase the total energy of the CO/Pd(100) system,
resulting in an adsorption energy of

 = –1.68 eV.

ΔECP = ECP
Pd(100)/CO − EPd(100) − ECO

ΔECP

14/16

Next 

 1 # ---
 2 # Bulk Configuration
 3 # ---
 4
 5 bulk_configuration = nlread('Pd100_CO.nc', BulkConfiguration)[-1]
 6
 7 # Add tags
 8 bulk_configuration.addTags('CO', [4, 5])
 9 bulk_configuration.addTags('Pd', [0, 1, 2, 3])
10 bulk_configuration.addTags('Selection 0', [0, 1])
11
12 # ---
13 # Calculator
14 # ---
15
16 # Get the calculator settings from non-BSSE calculation.
17 calculator = bulk_configuration.calculator()
18 basis_set = calculator.basisSet()
19 exchange_correlation = calculator.exchangeCorrelation()
20 numerical_accuracy_parameters = calculator.numericalAccuracyParameters()
21 poisson_solver = calculator.poissonSolver()
22
23 # Create BSSE calculator.
24 bsse_calculator = counterpoiseCorrected(LCAOCalculator, ["CO", "Pd"])
25 calculator = bsse_calculator(
26 basis_set=basis_set,
27 exchange_correlation=exchange_correlation,
28 numerical_accuracy_parameters=numerical_accuracy_parameters,
29 poisson_solver=poisson_solver,
30)
31
32 bulk_configuration.setCalculator(calculator)
33 nlprint(bulk_configuration)
34 bulk_configuration.update()
35 nlsave('Pd100_CO_cp.nc', bulk_configuration)
36
37 # ---
38 # Optimize Geometry
39 # ---
40 constraints = [0, 1]
41
42 bulk_configuration = OptimizeGeometry(
43 bulk_configuration,
44 max_forces=0.05*eV/Ang,
45 max_steps=200,
46 max_step_length=0.2*Ang,
47 constraints=constraints,
48 trajectory_filename='Pd100_CO_cp.nc',
49 disable_stress=True,
50 optimizer_method=LBFGS(),
51)
52 nlsave('Pd100_CO_cp.nc', bulk_configuration)
53 nlprint(bulk_configuration)
54
55 # ---
56 # Total Energy
57 # ---
58 total_energy = TotalEnergy(bulk_configuration)
59 nlsave('Pd100_CO_cp.nc', total_energy)
60 nlprint(total_energy)

 Previous

15/16

© Copyright 2023 Synopsys, Inc. All Rights Reserved.

16/16

	Table of Contents
	Geometry optimization: CO/Pd(100)
	Bulk palladium
	Build the Pd(100) surface and relax it
	Relax the CO/Pd(100) system
	Rigid relaxation
	Final relaxation

	Relax the CO molecule
	Adsorption energy
	Counterpoise correction

