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In this tutorial you will calculate the complex bandstructure of a silicon crystal along the (100) direction.

In particular you will:

1. create the Si(100) surface;
2. set up and run the calculation;
3. plot the complex bandstructure (3D and 2D).

BackgroundBackground

In a periodic solid the eigenstates
 of the Schrödinger equation

, (
 is the overlap matrix) can be written as

, where
 is a periodic function with the same periodicity as the crystal itself. In a usual bandstructure

calculation, the wave vector
 is a real number, and by solving the Schrödinger equation above for various fixed values of
 (typically located along different symmetry lines in the first Brillouin zone) an eigenproblem is defined,

from which the eigenenergies
 (i.e. the bandstructure) can be determined.

When calculating the complex bandstructure another approach is taken [1]. Instead the energy
 is fixed, and the values of
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 which solve the Schrödinger equation are sought. Such solutions will be found with both real and
complex

; the solutions with a real
 are the usual Bloch states, while the solutions with an imaginary part are exponentially decaying in one

direction and increasing in the other. Such solutions cannot exist in a bulk material, and so they are
normally ignored in a bandstructure calculation. They may however exist at a surface or interface, and
they give information about how electronic states decay in the material, for instance through a thin
tunneling barrier.

 NoteNote

You will primarily use the graphical user interface QuantumATK for setting up and analyzing the
results. If you are new to QuantumATK, it is recommended to go through the Basic QuantumATK
Tutorial.

The calculations in this tutorial will be performed using the semi-empirical models of QuantumATK. A
complete description of all the parameters, and in many cases a longer discussion about their
physical relevance, can be found in the ATK Reference Manual. In particular, the Reference Manual
entry for complex bandstructure calculations is of relevance: ComplexBandstructure .

Si(100) surfaceSi(100) surface

Start QuantumATK and create a new project named “ComplexBandstructure”. Then click Open and launch
the BuilderBuilder via the icon  on the toolbar.

In the Builder, click Add ‣ From Database and locate the “Silicon (alpha)” structure. Double-click the line to
add the structure to the Stash, or click the  icon in the lower right-hand corner.

Unfold Builders from the plugin panel and open the Surface (Cleave) tool, and follow the next steps to set
up the Si(100) surface:

1. Keep the default Miller indices (100) and click Next.
2. Keep the default lattice vectors and click Next.
3. Select Periodic (bulk-like) for the out-of-plane cell vector.
4. Set the thickness of the surface to 1 layer.
5. Click Finish to add the Si(100) surface structure to the Stash.

k

k
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With these settings we use a surface representation with a minimum number of layers in order to reduce
the calculation time and avoid zone folding.

 NoteNote

The cleave plane – in the present case (100) – is always spanned by the two first unit cell vectors,
 and

. In the “electrode” mode, the normal to this plane coincides with
, the third unit cell vector, but in the “bulk-like” mode this is not the case. In QuantumATK the

complex bandstructure is always computed along the third reciprocal vector,
, which is of course parallel to

. With the present geometry you will therefore obtain the complex bandstructure along (100).

Complex bandstructure calculationComplex bandstructure calculation

Send the structure to the Script GeneratorScript Generator  using the  icon in the lower right-hand corner of the
Builder and follow the next steps:

1. Add a  New Calculator block.
2. Add the  Analysis ‣ ComplexBandStructure block.
3. Change the default output filename to si_100_cbs.hdf5 .

Next, open the inserted  New Calculator block (double-click it), and set up a tight-binding calculation:

1. Select the ATK-SE: Extended Hückel calculator.
2. Set the k-point sampling to 5x5x5.
3. Under Huckel Basis set, select the Cerda.Silicon [diamond GW] basis set. This basis set has been fitted

to GW calculations, and gives an excellent description of the bandstructure, including the size of the
band gap.

4. Close the dialogue by clicking OK.

Next, open the  ComplexBandstructure analysis block, and edit it:

Set the energy range to -15 to 10 eV with 501 points.

B
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 NoteNote

The projection of
 on the cleave plane is kept constant in the complex andstructure calculation, and the value of the

projection is specified by the
 parameters, which are given in units of the two first reciprocal lattice vectors,

 and
. Therefore, the obtained solutions will lie along the third reciprocal lattice vector,
, which is parallel to the cleave plane normal. A new set of solutions

 is obtained for each value of
.

Please note that
 is therefore the real part of the complex bandstructure, while

 is the complex part.

You have now finished the Python script. Save it as si_100_cbs.py  and send it to the Job ManagerJob Manager  for
execution. It should only take a few minutes for this small system. If needed, you can also download the
script here:  si_100_cbs.py.

 TipTip

This type of calculation parallelizes extremely well, so for larger structures it is warmly recommended

k

(kA, kB)
gA

gB

gC

kC + iκC

(kA, kB)

kC

kappaC

5/11



to execute the script in parallel.

Analysing the resultsAnalysing the results

The file si_100_cbs.hdf5  should now have appeared on the QuantumATK LabFloorLabFloor. It contains the saved
Hückel calculation and the ComplexBandstructure analysis object:

 ComplexBandstructureComplexBandstructure

Select that analysis object and click Show 2D PlotShow 2D Plot tool from the right-hand side plugins panel. A window
with a plot of the complex bandstructure pops up. Zoom in a bit to filter out the solutions with large values
of the complex part

, since these are not really relevant:

Fig. 55 Si(100) bandstructure. The right-hand part of the plot shows the real bands – note the indirect
band gap of ~1.2 eV. The left-hand part of the plot shows the complex bands, plotted against the
imaginary part,

. The bands with a small imaginary part are the most important ones, since they are less damped if you
should try to tunnel electrons through a thin slice of silicon in the (100) direction.¶

 NoteNote

In the plot above, the solutions
 are given in reciprocal Cartesian coordinates, to make it easier to compare different structures. For

the real part of the bandstructure, on the other hand, the solutions
 are normalized by

, the layer separation perpendicular to the cleave plane. In the case of a fcc crystal cleaved along
(100), the layer separation is

, where
 is the lattice constant. The layer separation can be extracted from the ComplexBandstructure object

using the layerSeparation() method, see ComplexBandstructure .

3D and 2D visualizations3D and 2D visualizations
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In the complex part of the bandstructure, the solutions actually have a real part too. Thus, they could be
visualized in a three-dimensional plot,

. This is possible with the following script. Open the QuantumATK EditorEditor  and
copy-paste the script and save it as 3D_plot.py . Make sure that the indentation is correct. Alternatively,
you can simply download it here:  3D_plot.py.

 1 from QuantumATK import *
 2 from mpl_toolkits.mplot3d import Axes3D
 3 import matplotlib.pyplot as plt
 4 import math
 5
 6 # Read the complex bandstructure object from the NC file
 7 cbs = nlread('si_100_cbs.nc', ComplexBandstructure)[-1]
 8 energies = cbs.energies().inUnitsOf(eV)
 9 k_real, k_complex = cbs.evaluate()
10 L = cbs.layerSeparation()
11
12 fig = plt.figure()
13 ax = fig.add_subplot(111, projection='3d')
14
15 # First plot the real bands
16 kvr = numpy.array([])
17 e = numpy.array([])
18
19 # Loop over energies, and pick those where we have solutions
20 for (j, energy) in enumerate(energies):
21     k = k_real[j]*L/math.pi
22     if len(k)>0:
23         e = numpy.append(e,[energy,]*len(k))
24         kvr = numpy.append(kvr,k)
25         
26 # Plot the bands with red
27 ax.scatter([0.0,]*len(kvr), kvr, e, c='r', marker='o', linewidths=0, s=10)
28
29 # Next plot the complex bands
30 kvr = []
31 kvi = []
32 e = []
33
34 # Again loop over energies and pick solutions
35 for (j, energy) in enumerate(energies):
36     if len(k_complex[j])>0:
37         for x in numpy.array(k_complex[j]*L/math.pi):
38             kr = numpy.abs(x.real)
39             ki = -numpy.abs(x.imag)
40             # Discard rapidly decaying modes which clutter the plot
41             if ki>-0.3:
42                 e += [energy]
43                 kvr += [kr]
44                 kvi += [ki]
45
46 # Plot the complex bands with blue
47 ax.scatter(kvi, kvr, e, c='b', marker='o', linewidths=0, s=10)
48
49 # Put on labels
50 ax.set_xlabel('$\kappa$ (1/Ang)')
51 ax.set_ylabel('$kL/\pi$')
52 ax.set_zlabel('Energy / eV')
53
54 plt.show()

Execute the script using the Job ManagerJob Manager  or from a Terminal. The plot will resemble the figure below,
but your points will be more scattered, since the figure below was produced from a Hückel calculation
with 10,001 energy points instead of 501.

(x, y, z) = (kC, κC, E)
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Fig. 56 3D visualization of the complex bandstructure of Si(100). The real bands are plotted with red dots
and the complex part in blue. Note how the complex bands connect with the real bands.¶

Another way to visualize the real part of the complex bandstructure is using colors. The script 
 2D_plot.py does this (you can see the script below). It is a bit complicated towards the end, but that
part is just for placing the colorbar, and could be omitted.
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Fig. 57 2D visualization of the complex bandstructure. Note how the color-coding of the k-values applies
both to the real and the complex parts of the bandstructure, which makes it easier to see where the
complex bands are attached to the real ones.¶

The “forest” of complex bands with a rather large value of
 are not usually seen in tight-binding simulations. However, for DFT and Hückel, the basis sets are larger,

so there are more complex bands as well, connecting unoccupied levels with various valence bands.

 1 from QuantumATK import *
 2 import matplotlib.pyplot as plt
 3 import math
 4
 5 # Read the complex bandstructure object from the NC file
 6 cbs = nlread('si_100_cbs.nc', ComplexBandstructure)[-1]
 7 energies = cbs.energies().inUnitsOf(eV)
 8 k_real, k_complex = cbs.evaluate()
 9
10 ax = plt.axes()
11 cmap="Spectral"
12
13 # First plot the real bands
14 kvr = numpy.array([])
15 e = numpy.array([])
16 for (j, energy) in enumerate(energies):
17     k = k_real[j]*cbs.layerSeparation()/math.pi
18     if len(k)>0:
19         e = numpy.append(e,[energy,]*len(k))
20         kvr = numpy.append(kvr,k)
21         
22 # Plot
23 ax.scatter(kvr, e,
24            c=numpy.abs(kvr),
25            cmap=cmap, marker='o', linewidths=0, s=10)
26            
27 # Next plot the complex bands
28 kvr = numpy.array([])

κ
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28 kvr = numpy.array([])
29 kvi = numpy.array([])
30 e = numpy.array([])
31
32 for (j, energy) in enumerate(energies):
33     if len(k_complex[j])>0:
34         kr = [numpy.abs(x.real) for x in k_complex[j]]
35         ki = [numpy.abs(x.imag) for x in k_complex[j]]
36         e = numpy.append(e,[energy,]*len(kr))
37         kvr = numpy.append(kvr,kr)
38         kvi = numpy.append(kvi,ki)
39
40 # Plot with color depending on the imaginary part (corresponding to real k-points)
41 sc = ax.scatter(-kvi, e,
42                 c=kvr,
43                 cmap=cmap, marker='o', linewidths=0, s=10)
44
45 # Put on labels and decorations
46 ax.axvline(0,color='b')
47 ax.grid(True, which='major')
48 ax.set_xlim(-1, 1)
49 ax.set_ylim(-15, 10)
50 ax.annotate('$\kappa$ (1/Ang)', xy=(0.25,-0.07), xycoords="axes fraction", ha="center")
51 ax.annotate('$kL / \pi$', xy=(0.75,-0.07), xycoords="axes fraction", ha="center")
52 ax.set_ylabel('Energy / eV')
53
54 # Add a colorbar
55 fig = plt.gcf()
56 x1, x2, y1, y2 = 0., 1, ax.get_ylim()[0], ax.get_ylim()[0]+1
57 trans = ax.transData + fig.transFigure.inverted()
58 ax_x1, ax_y1 = trans.transform_point([x1, y1])
59 ax_x2, ax_y2 = trans.transform_point([x2, y2])
60 ax_dx, ax_dy = ax_x2 - ax_x1, ax_y2 - ax_y1
61 cmap_axes = plt.axes([ax_x1, ax_y1, ax_dx, ax_dy])
62 a = numpy.outer(numpy.arange(0,1,0.01),numpy.ones(10)).transpose()
63 cmap_plt = plt.imshow(a,aspect='auto',cmap=plt.get_cmap(cmap),origin=(0,0))
64 ax = plt.gca()
65 ax.set_xticks([])
66 ax.set_yticks([])
67 ax.set_xticklabels([])
68 ax.set_yticklabels([])
69
70 plt.show()

 HintHint

You may note that there are “gaps” in the visualizations. The reason is that, unlike a normal
bandstructure plot, the data is not plotted with lines, but with dots. In a standard bandstructure plot
you can – with some level of confidence – define “bands”, which continuously run between the
symmetry points (only band crossings can create some small problems). In the present case, the
number of solutions is first of all different at each energy (particularly on the complex side), and
depending on the density of the energy sampling, you may not hit a particular band close to points
where the bands are very flat (heavy effective mass). This can to some extent be alleviated by
increasing the number of energy points.
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