
1
2
2
2
3
3
4
6
6
8

Table of Contents

Table of Contents
Adding, Combining, and Modifying Classical Potentials

Introduction
Adding a New Classical Potential from Scratch

Setting up the System
Setting up the Potential

A Potential for Amorphous Oxides
Combining a Tersoff and a Lennard-Jones Potential

Setting up the System
Intra- and Inter-Layer Cohesion in MoS2

1/10

Docs » Tutorials » Molecular dynamics » Adding, Combining, and Modifying Classical Potentials

Adding, Combining, and Modifying Classical PotentialsAdding, Combining, and Modifying Classical Potentials

 PDF version

IntroductionIntroduction

The new ATK-ForceFieldATK-ForceField package provides a lot of pre-defined classical potentials covering a broad range
of elements and systems. However, if you are interested in a particular potential, which is not yet part of
this pre-defined set, you can easily add these parameters and create your own potential, as long as the
underlying potential functions are supported. You can also modify single parameters of existing
potentials in order to tune the potential to a special reference system. Furthermore, you can combine
different potentials to cover a broader range of elements. This tutorial provides a brief overview over this
functionality of ATK-ForceFieldATK-ForceField.

 NoteNote

For QuantumATK-versions older than 2017, the ATK-ForceFieldATK-ForceField calculator can be found under the
name ATK-ClassicalATK-Classical.

For a detailed overview and documentation of the available potential classes and functions in ATK-ATK-
ForceFieldForceField and the underlying TremoloXTremoloX package, take a look at the TremoloX section of the ATK
Reference Manual. There you will find definitions for all functions along with the corresponding
parameters.

 NoteNote

Be aware that you should always read the underlying publication carefully, if you use a new potential, to
ensure that the potential is suited for your desired application.

If possible, you should compare some benchmark values obtained with the classical potential to
corresponding experimental values or the results of suitable higher-level calculations, e.g. DFT
simulations. This holds in particular for the combination of different potentials, as they might have
been parameterized in a certain context and they are not always guaranteed to work in entirely
different environments.

Adding a New Classical Potential from ScratchAdding a New Classical Potential from Scratch

In this section, you will learn how to add a new parameter set, taken from a potential in the literature, to
the ATK-ForceFieldATK-ForceField calculator. You will be guided through the complete setup of a potential from scratch
to explain the various contents of a TremoloXTremoloX potential set. In practice, it is often more convenient to start
from a similar potential, send it to the EditorEditor with Script details set to “Show defaults” to report all

 QuantumATKQuantumATK

 Try it!

 QuantumATK

 Contact

2/10

details of the potential, and then merely edit the parameters in the EditorEditor.

As a first example, you will consider a simple titanium oxide crystal. One of the most popular classical
potentials for titania is the one proposed by Matsui and Akaogi (MA) [1], as it reproduces the essential
properties of both crystal and amorphous titania systems quite well. Later on, you will set up a potential
designed for the simulation of amorphous oxide systems [2].

Setting up the SystemSetting up the System

To set up a suitable test system, open the BuilderBuilder, click Add ‣ From database, search for “TiO2”, and
select and add the Rutile crystal structure.

You can now send the configuration to the ScriptGeneratorScriptGenerator to set up the desired optimization, molecular
dynamics, or analysis script. For now, you can select any arbitrary calculator as a place holder. A typical
simulation script could consist of Calculator, Optimization ‣ OptimizeGeometry, and Analysis ‣
ElasticConstants blocks. For accurate results, set the maximum force and maximum stress values in the
OptimizeGeometryOptimizeGeometry settings and the maximum force value in the ElasticConstantsElasticConstants settings to 0.001 eV/Å
(respectively eV/Å). Furthermore, disable the Constrain cell checkbox in the OptimizeGeometryOptimizeGeometry widget
to optimize the cell parameters as well.

Send the script to the EditorEditor.

Setting up the PotentialSetting up the Potential

In the EditorEditor, locate the block where the potential is defined (i.e. everything after the BulkConfigurationBulkConfiguration and
before the OptimizeGeometryOptimizeGeometry block) and delete it.

To define a new TremoloX potential you first need to initialize a new TremoloXPotentialSet object. You
can do this by adding the following line:

potentialSet = TremoloXPotentialSet('MatsuiAkaogi_TiO')

The string in parethesis defines the name of the potential, but it does not have any influence on its
functionality.

As the potential set is currently empty, you need to add all necessary components. You should start with
adding the ParticleType. In this case, add one titanium and one oxygen particle type by inserting these two
lines into the script:

potentialSet.addParticleType(ParticleType(symbol='O', mass=15.9994*atomic_mass_unit, charge=-1.098))
potentialSet.addParticleType(ParticleType(symbol='Ti', mass=47.867*atomic_mass_unit, charge=2.196))

The partial charges are taken from Ref. [1]. The MA potential consists of two interaction types:

1. A Tosi-Fumi (often also called Buckingham) type potential (i.e. a combination of an exponential,
repulsive contribution and an attractive van der Waals part)

2. Electrostatic coulomb interactions, which model the partial ionization of the atoms.

The first part can be added by using the TosiFumiPotential, which implements the potential function

If you compare this form to the equation given in Ref. [1], you will notice that the last term is not required,
implying that D must be set to zero. Take care with the energy unit in Ref. [1], which is kJ/mol. The
parameters must be given in that unit or converted to electron volt. The A, B, C, D, and

 parameters can be set as follows:

3

V (r) = AeB(σ−r) − − .
C

r6

D

r8

σ

3/10

potentialSet.addPotential(TosiFumiPotential(particleType1='O',
 particleType2='Ti',
 A=0.811696*kiloJoulePerMol,
 B=5.154639*Angstrom**-1,
 sigma=2.8171*Angstrom,
 C=1215.0*kiloJoulePerMol*Angstrom**6,
 D=0.0*eV*Angstrom**8,
 r_i=6.0*Angstrom,
 r_cut=7.5*Angstrom))
potentialSet.addPotential(TosiFumiPotential(particleType1='O',
 particleType2='O',
 A=0.979056*kiloJoulePerMol,
 B=4.27350*Angstrom**-1,
 sigma=3.2678*Angstrom,
 C=2916.0*kiloJoulePerMol*Angstrom**6,
 D=0.0*eV*Angstrom**8,
 r_i=6.0*Angstrom,
 r_cut=7.5*Angstrom))
potentialSet.addPotential(TosiFumiPotential(particleType1='Ti',
 particleType2='Ti',
 A=0.644336*kiloJoulePerMol,
 B=6.49351*Angstrom**-1,
 sigma=2.3664*Angstrom,
 C=506.25*kiloJoulePerMol*Angstrom**6,
 D=0.0*eV*Angstrom**8,
 r_i=6.0*Angstrom,
 r_cut=7.5*Angstrom))

The first two arguments in each potential determine which two particle types the potential is supposed to
act between. The additional parameters r and r determine the range and cutoff behavior. In this case,
the potential follows the original form for distances below 6 Å, whereas for larger distances a smoothing
function is invoked for ranges up to 7.5 Å. At larger distances these interactions are assumed to be zero.

The electrostatic interactions are taken into account by adding a suitable Coulomb solver. All Coulomb
solvers use the partial charges that you have defined for the particle types. The default algorithm in ATK-ATK-
ForceFieldForceField is CoulombDSF employing a cutoff and a damped shifted force (DSF) to smooth the transition
[2]. To achieve a high precision with this method (which can be important particularly for static
calculations, such as elastic constants, phonons, or lattice constants) the cutoff has to be chosen
sufficiently high (e.g. ≥ 15 Å). Here, we will instead use the smooth-particle-mesh-Ewald method
(CoulombSPME), which automatically takes care of the long-ranged contributions of the Coulomb
interactions. This Coulomb solver is added via the line:

potentialSet.setCoulombSolver(CoulombSPME(r_cut=9.0*Angstrom))

Finally, you have to initialize the actual TremoloXCalculator and pass the created potential set as
argument. Following that, you have to attach the calculator to the bulk configuration:

calculator = TremoloXCalculator(parameters=potentialSet)
bulk_configuration.setCalculator(calculator)

The remaining part of the script can be left as it is. An example script can be found in the file
 TiO2_Matsui.py.

Now, you can send the script to the JobManagerJobManager and start the calculation. The results should be
consistent with Ref. [1].

A Potential for Amorphous OxidesA Potential for Amorphous Oxides

In this example, another potential is introduced, which is designed to simulate amorphous materials, such
as titanium, silicon, hafnium, or tantalum oxide, as well as their mixed oxides [3].

i cut

4/10

 NoteNote

From QuantumATK 2015QuantumATK 2015 on, this potential is already available as the pre-defined potential
Trinastic_HfOSiTaTi_2013.

To test the potential, you can, for instance, use the rutile configuration from the previous example. The
potential is similar to the MA potential, shown above, but additionally it includes a MorsePotential.

In fact, the formula presented in Ref. [3] omits the the last contribution in the squared brackets. However,
as this term only represents a constant offset in the energy, it has no influence on the forces in an MD
simulation, and we shall therefore neglect this discrepancy here. Although the potential terms could in
principle be set up similar to the previous example by using the TosiFumiPotential, we will present an
alternative approach by adding all terms individually.

To obtain the potential, you need an exponential repulsive contribution, which will be taken from the
BuckinghamPotential, a dispersion term, for which you will use a LennardJonesMNPotential, and finally a
MorsePotential.

The potential set up is demonstrated for the example of the Ti-O interactions. The other elements follow
the same scheme by inserting the corresponding element-pair-specific potential parameters from Ref. [3].

Start by initializing a new TremoloXPotentialSet and adding the particle types with the corresponding
partial charges:

potential_set = TremoloXPotentialSet('Trinastic_JCP2013')
potential_set.addParticleType(ParticleType(symbol='O', mass=15.9994*atomic_mass_unit, charge=-1.2))
potential_set.addParticleType(ParticleType(symbol='Ti', mass=47.867*atomic_mass_unit, charge=2.4))

Then define the repulsive Buckingham term:

potential_set.addPotential(BuckinghamPotential(particleType1='O',
 particleType2='Ti',
 A=5105.12*eV,
 rho=0.2253*Angstrom,
 r_i=6.0*Angstrom,
 r_cut=7.5*Angstrom))

Add the dispersion term. You will only need the attractive part of the Lennard-Jones potential, i.e. the A-
parameter has to be set to zero:

potential_set.addPotential(LennardJonesMNPotential(particleType1='O',
 particleType2='Ti',
 A=0.0*eV*Angstrom**12,
 B=20.0*eV*Angstrom**6,
 m=12,
 n=6,
 r_cut=10.0*Angstrom))

Add the Morse potential:

V (r) = Eij [(1 − e−kij(r−r0))2
− 1]

5/10

potential_set.addPotential(MorsePotential(particleType1='O',
 particleType2='Ti',
 E_0=0.3478*eV,
 k=1.9*Angstrom**-1,
 r_0=1.96*Angstrom,
 r_i=6.5*Angstrom,
 r_cut=7.0*Angstrom))

Finally, set up a Coulomb solver, e.g. CoulombSPME or CoulombDSF to calculate the electrostatic
interactions, and initialize a new TremoloXCalculator with this potential set:

potential_set.setCoulombSolver(CoulombSPME(r_cut=9.0*Angstrom))
calculator = TremoloXCalculator(parameters=potential_set)

In Ref. [3], an alternative strong parameterization is proposed, which can be implemented by inserting the
corresponding parameters instead of the ones shown above. The implementation of the interactions
between the remaining element pairs works similarly. From the parameter table in Ref. [3], you will find
that for some element combinations the Morse energy parameter is zero, which means that no Morse
potential is required between these elements.The full potential can be found in the file
 script_Trinastic_potential.py.txt.

Combining a Tersoff and a Lennard-Jones PotentialCombining a Tersoff and a Lennard-Jones Potential

In this section, you will learn how you can combine Tersoff and Lennard-Jones (LJ) potentials, to simulate
a single lithium atom in a graphite cell. This combination of materials is particularly interesting, as it
provides a very simple model of a typical anode in lithium ion batteries. The combination of Tersoff and
LJ-potentials is typically used for multi-component materials where the individual components interact
only weakly with each other, predominantly via repulsive and van der Waals forces. The strong bonded
interaction within a component, in this example graphite, can then be described by a Tersoff potential, or
another suitable potential for that material.

In this example, you will adopt the parameters of Ref. [4]. Be aware that they have not been tested
extensively for this system. Therefore, they should only be considered a starting point for your own
investigations.

Setting up the SystemSetting up the System

To set up a test system, open the BuilderBuilder and add a graphite cell via Add ‣ From database. Increase the
size of the cell by clicking Bulk tools ‣ Repeat, and make a 4x4x2 repetition of the unit cell.

Select a triangle of 3 atoms (one in the second layer, two in the third layer) as shown in the picture.

Place an additional atom in the center of the selected atoms, by clicking on the icon in the toolbar (see

6/10

picture). This atom will later be converted into lithium, but for now we will retain it as carbon.

Send the configuration to the ScriptGeneratorScriptGenerator using the button. In the ScriptGeneratorScriptGenerator, add a
Calculators ‣ ForceFieldCalculator object, and then the simulation task of your choice, e.g. an
Optimization ‣ MolecularDynamics block. Open the ForceFieldCalculatorForceFieldCalculator settings, and select the
Tersoff_C_2005 potential (this will be the base potential for the graphite). Under Results, select “Do not
save” and uncheck Print results to summary log . In the Output Settings, set Script Detail to “Show
defaults”, and send the script to the EditorEditor.

At first, locate the element list. Change the name of the last element in the list from Carbon to Lithium .
(If you had done this already in the BuilderBuilder, it would not have been possible to select the Tersoff potential
in the ScriptGeneratorScriptGenerator, since it doesn’t support lithium.)

If you now take a look at the calculator section, you will find the detailed definition of the Tersoff potential.
This is due to the Show defaults option. Locate the line where the ‘C’ element definition is added via the
addParticleType() method. Make a copy (to invoke two addParticleType() calls), and modify the

relevant lines as shown below:

potentialSet.addParticleType(ParticleType(symbol='C',
 mass=12.0107*atomic_mass_unit,
 charge=None,
 # Sigma and epsilon from Ref [3].
 sigma=3.3611*Ang,
 epsilon=0.004207*eV))
potentialSet.addParticleType(ParticleType(symbol='Li',
 mass=6.941*atomic_mass_unit,
 charge=None,
 # Sigma and epsilon from Ref [3].
 sigma=0.826*Ang,
 epsilon=0.271115*eV))

For carbon, the LJ-parameters epsilon and sigma have been added and set to the values taken from Ref
[4]. For lithium, you first have to change the symbol and the atomic mass and then set the corresponding
LJ-parameters. Note that in this case, we consider neutral lithium atoms, i.e. without defining a partial
charge, as this is the preferred state in the anode (in contrast to lithium ions in the cathode).

The LJ-potential does not become active by specifying the particle parameters alone. You additionally
have to add the corresponding potential function. To this aim, add the following two lines:

potentialSet.addPotential(LennardJonesPotential(particleType1='C',
 particleType2='Li',
 r_cut=9.0*Ang))
potentialSet.addPotential(LennardJonesPotential(particleType1='Li',
 particleType2='Li',
 r_cut=9.0*Ang))

This will add LJ-potentials between carbon and lithium, as well as between lithium and lithium. Note that
there is no LJ-potential between carbon atoms, as these interactions are sufficiently defined by the
Tersoff-potential (the LJ would just be a tiny correction).

The Lennard-Jones potential in ATK-ForceFieldATK-ForceField is defined as

and uses the combination rules to obtain
 and
 parameters between different elements that you can find in the LennardJonesSplinePotential

documentation page.

You should always check whether the combination rules recommended for the chosen LJ-parameters
agree with this definition. If not, you should use the more general LennardJonesMNPotential.

Vij(r) = 4ϵij [()12
− ()6]σij

r

σij

r

σij

ϵij

7/10

An example of the final script can be found in  Script_graphite_lithium.py. You can add any optimization,
molecular dynamics, or analysis block, compatible with ATK-ForceFieldATK-ForceField. This picture shows a snapshot of
an MD simulation of the lithium-graphite system.

Intra- and Inter-Layer Cohesion in MoSIntra- and Inter-Layer Cohesion in MoS

 NoteNote

If you are using QuantumATK 2014QuantumATK 2014, you should make sure that you have ugraded to QuantumATKQuantumATK
2014.32014.3 (or later) to run this part of the tutorial, as earlier versions may cause some problems.

In this last example you will learn how to define a potential only on the selected atoms, using tags. We
consider a molybdenite (MoS) crystal where the intralayer interactions are described by a Stillinger-
Weber potential, while the comparably weaker inter-layer interactions are again modelled by a Lennard-
Jones potential, as described in Ref. [4].

To set up the system, open the Builder and search for and add the molybdenite structure from the
database. Select one layer by drawing a rectangle around it and add a tag with the name “layer1” (via
Selection Tools ‣ Tags). Repeat the procedure for the second layer, using the name “layer2”.

Send the configuration to the ScriptGeneratorScriptGenerator.

In the ScriptGeneratorScriptGenerator add a Calculators ‣ ForceFieldCalculator and an Optimization ‣ OptimizeGeometry
block. Open the ATK-ForceFieldATK-ForceField calculator and select the StillingerWeber_MoS_2013 potential. Under

22

2

8/10

Results, select “Do not save” and close the widget. Open the OptimizeGeometryOptimizeGeometry widget and adjust the
setting for a geometry and stress optimization, as described in the first example.

Send the final script to the EditorEditor.

In the python-script, locate the line where the Stillinger-Weber-potential is defined. Copy the line, and
adjust both lines in the following way:

sw_layer1 = StillingerWeber_MoS_2013(tags='layer1')
sw_layer2 = StillingerWeber_MoS_2013(tags='layer2')

This will define each potential only between the atoms belonging to the corresponding tagged group.
Furthermore, you have to define a Lennard-Jones potential, which acts only between the sulfur atoms of
different groups. This can be done by adding the following lines of code:

Define a new potential for the interlayer interaction.
lj_interlayer_potential = TremoloXPotentialSet(name="InterLayerPotential")
Add particle type definitions for both types.
lj_interlayer_potential.addParticleType(ParticleType.fromElement(Molybdenum))
lj_interlayer_potential.addParticleType(ParticleType.fromElement(Sulfur, sigma=3.13*Angstrom, epsilon=0.00693
Add Lennard-Jones potentials between the sulfur atoms of different layers.
lj_interlayer_potential.addPotential(LennardJonesPotential('S', 'S', r_cut=10.0 * Angstrom))
lj_interlayer_potential.setTags(['layer1', 'layer2'])

The Lennard-Jones parameters are taken from Ref. [5]. The last line ensures that the Lennard-Jones-
potential only acts between alternating layers.

Finally, all three potential sets have to be combined in the TremoloX-calculator. To accomplish this, add
the following lines:

Combine all 3 potential sets in a single calculator.
calculator = TremoloXCalculator(parameters=[sw_layer1, sw_layer2, lj_interlayer_potential])

After defining the potential, the script continues as usual, by adding the calculator to the bulk
configuration and performing the geometry optimization. The final script can be found in the file
 Molybdenite_SW_plus_LJ.py for comparison.

If you run the script, you will obtain optimized lattice constants, which should be very similar to the ones
reported in Ref. [5].

ReferencesReferences

[1] (1,2,3,4,5)
M Matsui and M. Akaogi: Molecular dynamics simulations of the structural and physical properties of the
four polymorphs of TiO2. Mol. Sim. 6, 239 (1991)

[2] (1,2)
C.J. Fennell and J.D. Gezelter: Is the Ewald summation still necessary? Pairwise alternatives to the
accepted standard for long-range electrostatics. J. Chem. Phys. 124, 234104 (2006)

[3] (1,2,3,4,5)
J.P. Trinastic, R. Hamdan, Y. Wu, L. Zhang, H.-P. Cheng: Unified interatomic potential and enery barrier
distributions for amorphous oxides. J. Chem. Phys. 139, 154506 (2013)

[4] (1,2,3)
O. N. Kalugin, V. V. Chaban, O. V. Prezhdo: Microscopic Structure and Dynamics of Molecular Liquids and
Electrolyte Solutions Confined by Carbon NanoTubes: Molecular Dynamics Simulations. Carbon
Nanotubes - Synthesis, Characterization, Applications (2011), Siva Yellampalli (Ed.).

[5] (1,2)

9/10

Next 

J.-W. Jiang, H.S. Park, T. Rabczuk: Molecular dynamics simulations of single-layer molybdenum
disulphide (MoS): Stillinger-Weber parameterization, mechanical properties and thermal conductivity J.
Appl. Phys. 114, 064307 (2013)

 Previous

© Copyright 2023 Synopsys, Inc. All Rights Reserved.

2

10/10

	Table of Contents
	Adding, Combining, and Modifying Classical Potentials
	Introduction
	Adding a New Classical Potential from Scratch
	Setting up the System
	Setting up the Potential

	A Potential for Amorphous Oxides
	Combining a Tersoff and a Lennard-Jones Potential
	Setting up the System

	Intra- and Inter-Layer Cohesion in MoS2

