
1
2
2
2
8
9

10
11
11
12
13
15
15

Table of Contents

Table of Contents
Adaptive Kinetic Monte Carlo Simulation of Pt Island Ripening

Introduction
Creating the initial configuration
Setting up the AKMC Simulation

Adding the calculator
Running the Simulation
Analyzing the AKMC Simulation

AKMC Log File
Kinetic Monte Carlo Analyzer
Markov Chain Analyzer

Conclusion
References

1/16

Downloads & LinksDownloads & Links

 PDF version
Basic QuantumATK Tutorial
ATK Reference Manual
 initial.py
 morse_potential.py
 adding_akmc.py
 akmc.py

Docs » Tutorials » Materials, surfaces and chemistry »
Adaptive Kinetic Monte Carlo Simulation of Pt Island Ripening

Adaptive Kinetic Monte Carlo Simulation of Pt IslandAdaptive Kinetic Monte Carlo Simulation of Pt Island
RipeningRipening

Version:Version: 2017

This tutorial is on the use of the Adaptive Kinetic Monte Carlo (AKMC) method. It will cover setting up a
simulation to model Pt island ripening on a Pt(111) surface, how to implement the Morse potential, and
how to analyze the results. For more information on the AKMC method, you may look at the following
tutorials: AKMC Simulation of Pt on Pt(100) and Modeling Vacancy Diffusion in SiGe alloy.

IntroductionIntroduction

In this tutorial we will model island ripening of Pt adatoms on a Pt(111) surface at 300 K using the
Adaptive Kinetic Monte Carlo (AKMC) method. The initial surface will have seven adatoms and the most
stable structure is a compact heptamer island. The atomic interactions will be modeled using a simple
Morse potential to allow us to compare our results to a published benchmark study [1]. The use of the
Morse potential also allow us to showcase the use of AKMC without resorting to computationally
expensive DFT calculations, but it is not expected to directly reproduce a particular experimental result.

Creating the initial configurationCreating the initial configuration

The initial configuration will be a 4 layer p (6x6)-Pt(111) slab with seven adatoms occupying three-fold
hollow sites.

1. Open the BuilderBuilder.
2. Import the Pt fcc bulk configuration by clicking on Add ‣ From Database and search for Platinum.
3. The Pt primitive cell will appear in the StashStash.
4. Click on Builders ‣ Surface (Cleave).
5. In the new window, choose the (111) Miller indices.

 QuantumATKQuantumATK

 Try it!

 QuantumATK

 Contact

2/16

6. Define the p (6x6) surface unit cell.

7. Choose the Non-periodic and normal (slab) option and a thickness of 5 layers. Click Finish button.

8. Click on Coordinate Tools ‣ Center and select the A and B axes and click the Apply button.

3/16

9. Select the whole top layer.

4/16

10. Un-select seven non-contiguous atoms holding the shift key on your keyboard and then press the
del key to remove the selected atoms. There should now be seven adatoms. It should look similar to

the image below.

5/16

11. Send the configuration to the Script GeneratorScript Generator by clicking the or dragging the structure onto the
ScripterScripter.

For now, do not add a calculator block. Since we are using a Morse potential, we will specify the calculator
later. The parameters for the Morse potential were originally fitted to model bulk Pt and are the same as
used in [1].

1. Add an Optimization ‣ OptimizeGeometry block and double-click it. Set the Force tolerance to 0.01
eV/Å. Then click Add Constraints and select the bottom row of atoms, click Add tag from Selection,
and then set the Constraint to Fixed.

6/16

2. Change the Default output file to initial.nc .
3. Send the script to the EditorEditor.
4. We now need to define the Morse calculator. Insert the following code above the call to

OptimizeGeometry: morse_potential.py

potentialSet = TremoloXPotentialSet(name='Pt-Morse')
potentialSet.addParticleType(ParticleType.fromElement(Platinum))
potentialSet.addPotential(MorsePotential(
 'Pt',
 'Pt',
 r_0=2.897*Angstrom,
 k=1.6047*Angstrom**-1,
 E_0=0.7102*eV,
 r_i=6.5*Angstrom,
 r_cut=9.5*Angstrom)
)
calculator = TremoloXCalculator(parameters=potentialSet)
bulk_configuration.setCalculator(calculator)

5. Now savesave the script as initial.py or download the initial.py and send it to the Job ManagerJob Manager and
run it.

The optimized geometry can now be selected on the LabFloorLabFloor and visualized in the ViewerViewer. It may be
useful to click on PropertiesProperties in the right-hand panel and tweak the way the atoms are rendered to more
easily distinguish the adatoms from the bulk atoms. In the image below, the atoms are rendered as
covalent radius spheres and the adatoms are in a darker gray than the bulk Pt.

7/16

 TipTip

If you wish to re-create the above figure, you can do the following: Select the file initial.nc file on the
LabFloorLabFloor. Click the ViewerViewer on the right-hand panel. Open the PropertiesProperties window. Select the Covalent
option under AtomsAtoms and check Wrap atoms under BulkBulk. The atoms are now shown as balls with their
covalent radius. Choose the top 7 Pt atoms and then change to another color (here we chose gray).
Now you can distinguish the 7 adatoms on the Pt surface.

Setting up the AKMC SimulationSetting up the AKMC Simulation

We will now set up and run the AKMC simulation. The goal is to determine the time required to form a
compact heptamer island at 300 K.

Now that you have an optimized initial structure, you can run the AKMC simulation. Drag initial.nc from
the main QuantumATK window to the ScripterScripter. Starting from ATK 2017ATK 2017, AdaptiveKineticMonteCarloAdaptiveKineticMonteCarlo is
implemented in the Scripter.

 NoteNote

If you have an older version, you can download the script adding_akmc.py and append the contents
in the EditorEditor instead of following the steps below. Instead, go to the next section: Adding the
calculator

We use the Morse potential which is the same as used in [1]. After setting up the AKMC simulation, we will
add the Morse Potential calculator in the editor in the next section.

In the ScripterScripter, add an Optimization ‣ AdaptiveKineticMonteCarlo block.

1. Double click the AdaptiveKineticMonteCarloAdaptiveKineticMonteCarlo block.
2. Go to the OptimizationOptimization tab, and click on the Atomic Constraint Editor to add a constraint.
3. Select the bottom layer to be constrained, as in the initial optimization, and press the Add tag from

Selection button. Change to the Fixed constraint. This will remove the red-colored warning.
4. In the Kinetic Monte CarloKinetic Monte Carlo tab, set the value to 20 in the Superbasin creation threshold.
5. For HTST PrefactorHTST Prefactor, we use a fixed Prefactor value of 10 s because it does not change much from13 -1

8/16

one reaction to another.

 NoteNote

For most solid-state systems, the prefactor is not important to calculate directly (and it is expensive to
do so). The primary difference between different reaction mechanisms is the size of the energy barrier.
In the referenced simulation we are comparing against, this step was skipped.

6. In the Saddle Search settings, set the number of searches to 200.
7. Change the Default output file name to akmc.nc and go to the EditorEditor by clicking the icon.

Adding the calculatorAdding the calculator

Now we need to add the Morse potential calculator above the AKMC calculation in the EditorEditor using the
script morse_potential.py.

9/16

Morse-potential
potentialSet = TremoloXPotentialSet(name='Pt-Morse')
potentialSet.addParticleType(ParticleType.fromElement(Platinum))
potentialSet.addPotential(MorsePotential(
 'Pt',
 'Pt',
 r_0=2.897*Angstrom,
 k=1.6047*Angstrom**-1,
 E_0=0.7102*eV,
 r_i=6.5*Angstrom,
 r_cut=9.5*Angstrom)
)
calculator = TremoloXCalculator(parameters=potentialSet)
bulk_configuration.setCalculator(calculator)

Adaptive Kinetic Monte Carlo

htst_parameters = HTSTParameters(
 assumed_prefactor=1e+13*1/Second,
)

if os.path.isfile('akmc_markov_chain.nc'):
 markov_chain = nlread('akmc_markov_chain.nc')[-1]
else:
 markov_chain = MarkovChain(
 configuration=bulk_configuration,
 configuration_energy=TotalEnergy(bulk_configuration).evaluate(),
)

if os.path.isfile('akmc_kmc.nc'):
 kmc = nlread('akmc_kmc.nc')[-1]
else:
 kmc = None

constraints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]

akmc = AdaptiveKineticMonteCarlo(
 markov_chain=markov_chain,
 kmc_temperature=300.0*Kelvin,
 md_temperature=2000.0*Kelvin,
 calculator=bulk_configuration.calculator(),
 kmc=kmc,
 superbasin_threshold=20,
 htst_parameters=htst_parameters,
 constraints=constraints,
 confidence=0.99,
 filename_prefix='akmc',
)

akmc.run(max_searches=200, max_kmc_steps=10000)

You can also download the input file akmc.py to start the run for the AKMC simulation.

Running the SimulationRunning the Simulation

This script will run 200 saddle searches each time it is called. The first time the script is run, it creates a
new AKMC simulation, while subsequent runs resume the simulation. Each saddle search takes about 15
seconds. So, in serial, 200 saddle searches will take under 1 hour to complete. The calculation can also
be run in parallel using MPI, but note that you need at least 3 processes to get a speed-up. The goal of
this simulation is to find the time it takes to form a compact heptamer (7 atom) island. This is the lowest
energy configuration of the system. The AKMC script will have to be run several times to reach this point.

10/16

After each run, you should follow the analysis below to monitor the progress of the simulation.

 NoteNote

You will probably need to run more searches to find a heptamer island with the AKMC simulation. If
you do not find it within 200 searches, you can restart the simulation to search for more saddle points
by using the files: akmc_markov_chain.nc and akmc_kmc.nc , which the script is set up to do
automatically. Here we ran it again up to 1000 searches.

Analyzing the AKMC SimulationAnalyzing the AKMC Simulation

Since AKMC simulations are stochastic, your results will be slightly different from what is shown here.
You can download the current results for the same analysis. akmc_log.nc, akmc_markov_chain.nc
and akmc_kmc.nc.

There are three output files to examine: akmc_log.nc , akmc_markov_chain.nc and akmc_kmc.nc . The
akmc_log.nc file contains information about the results of each saddle search. If there are errors they will

be reported here. The file akmc_markov_chain.nc contains the energies and geometries of the different
configurations and how the different configurations are connected through saddle points and their energy
barriers. It also contains the data needed to compute rate constants using harmonic transition state
theory. The file akmc_kmc.nc stores the Kinetic Monte Carlo simulation data. This includes the current
state identifier and the simulation time.

AKMC Log FileAKMC Log File

The log file should be looked at first to make sure that the simulation ran correctly. Below is an example
of what the log file will look like. The log file can be viewed by clicking on the akmc_log.nc file on the
LabFloorLabFloor and clicking the Text Representation…Text Representation… button in the panel on the right.

The first column shows the state id number that is used to identify each configuration in the Markov
Chain. The second column shows the search number, which is a unique identifier for each saddle search.
The third column shows the confidence estimate, which is a measure of the probability that all relevant
saddle points have been found in that state. Saddle searches are run in each until the confidence exceeds
the chosen threshold passed to the AKMC simulation. In the log file below, you can see that the initial
state 0 is visited until the confidence meets 0.99, then the next state 2 is reached.

The fifth column contains a message about the saddle search. The message found new state represents
a new reaction mechanism being discovered, while the message Found saddle connecting to state i again
represents state i having been found again. In the state id 0, there are 7 Found new state and several
Found saddle connecting to state i again. There is only one search that ended in an error in this example:
search number 17. In this search a new saddle point was found, but it does not connect back to the
current state. This means it is a saddle point that describes a reaction between two different states. This
is expected to happen sometimes, but if a large number of the saddle searches have this message, then it
probably means that the MD temperature is too high.

11/16

Item: 0
File: C:\tutorial\akmc_log.nc
Title: akmc_log.nc - gID000
Type: AKMCLog
state id search number confidence message
 0 0 0.000000 Found new state
 0 1 0.000000 Found new state
 0 2 0.000000 Found new state
 0 3 0.000000 Found new state
 0 4 0.655097 Found saddle connecting to state 2 again
 0 5 0.801496 Found saddle connecting to state 4 again
 0 6 0.866310 Found saddle connecting to state 2 again
 0 7 0.927713 Found saddle connecting to state 1 again
 0 8 0.866170 Found new state
 0 9 0.507710 Found new state
 0 10 0.520759 Found saddle connecting to state 2 again
 0 11 0.878596 Found saddle connecting to state 6 again
 0 12 0.914000 Found saddle connecting to state 6 again
 0 13 0.918800 Found saddle connecting to state 2 again
 0 14 0.931824 Found saddle connecting to state 6 again
 0 15 0.933590 Found saddle connecting to state 2 again
 0 16 0.854401 Found new state
 0 17 0.854401 No barrier was found between the end points of the NEB calculation. Check
 0 18 0.858786 Found saddle connecting to state 6 again
 0 19 0.932129 Found saddle connecting to state 7 again
 0 20 0.962899 Found saddle connecting to state 5 again
 0 21 0.963494 Found saddle connecting to state 2 again
 0 22 0.966538 Found saddle connecting to state 5 again
 0 23 0.966757 Found saddle connecting to state 2 again
 0 24 0.966837 Found saddle connecting to state 2 again
 0 25 0.967957 Found saddle connecting to state 5 again
 0 26 0.968369 Found saddle connecting to state 5 again
 0 27 0.968399 Found saddle connecting to state 2 again
 0 28 0.968550 Found saddle connecting to state 5 again
 0 29 0.975805 Found saddle connecting to state 4 again
 0 30 0.978474 Found saddle connecting to state 4 again
 0 31 0.978529 Found saddle connecting to state 5 again
 0 32 0.978540 Found saddle connecting to state 2 again
 0 33 0.978544 Found saddle connecting to state 2 again
 0 34 0.985801 Found saddle connecting to state 7 again
 0 35 0.985802 Found saddle connecting to state 2 again
 0 36 0.985803 Found saddle connecting to state 2 again
 0 37 0.986687 Found saddle connecting to state 3 again
 0 38 0.986708 Found saddle connecting to state 5 again
 0 39 0.989750 Found saddle connecting to state 1 again
 0 40 0.991364 Found saddle connecting to state 6 again
 2 41 0.000000 Found new state
 2 42 0.000000 Found new state

Kinetic Monte Carlo AnalyzerKinetic Monte Carlo Analyzer

The main way to view the results of the AKMC simulation is with the Kinetic Monte Carlo AnalyzerKinetic Monte Carlo Analyzer . To use

this tool, select both the KMC object in the akmc_kmc.nc and the MarkovChain object in

the akmc_markov_chain.nc files (if you hold the ctrl key, you can select on multiple files in the LabFloor)
and then click on Kinetic Monte Carlo Analyzer…Kinetic Monte Carlo Analyzer… in the panel on the right.

The Kinetic Monte Carlo Analyzer shows a plot of energy vs. time during the AKMC simulation on the left
and the geometry of the currently selected configuration/time step on the right.

12/16

 TipTip

You can click on the image to see a version with higher resolution.

The above image shows the results after 1000 saddle searches, which results in the simulation of about
0.17 s of dynamics. The compact island was formed at KMC step 176, which corresponded to a
simulation time of 3.4 ms. After the compact island is formed, the entire island diffuses across the
surface using a concerted sliding mechanism. When you click the play button, you see the dynamics
along time.

Markov Chain AnalyzerMarkov Chain Analyzer

The Markov Chain Analyzer allows you to look at which reactions are present at each step of the KMC
simulation. It can be invoked in two ways:

1. From the Kinetic Monte Carlo AnalyzerKinetic Monte Carlo Analyzer by double clicking on a entry in the table.

2. By selecting the object in the akmc_markov_chain.nc on the LabFloorLabFloor and clicking the MarkovMarkov

Chain Analyzer…Chain Analyzer… button in the panel.

If we go to the first line in the table in the Kinetic Monte Carlo Analyzer and double click the line, it will
open the Markov Chain Analyzer for the initial state.

13/16

Each of these reaction mechanisms has a very small barrier, indicating that the initial configuration is very
unstable. By selecting different mechanisms from the table, each can be visualized. Now we will examine
what reaction mechanisms are present for the compact island. Double-click on the line with the 176th
step, which is where we found the island formation in the Kinetic Monte Carlo Analyzer. This will take us to
state 44, which is the first state containing the compact island.

 NoteNote

Remember that the step number is most likely different in your simulation because of its randomly
selected initial structure and dynamics.

14/16

Next

The compact island shows several reaction mechanisms. Each corresponds to the entire 7 atom island
diffusion in concert. The barriers are much larger (> 0.65 eV) than those from the initial state and explain
why once the compact island is formed a large amount of time passed during the KMC simulation.

The increase in reaction barriers from the initial state with disconnected adatoms to the final compact
island shows that the diffusion coefficient of the adatoms decreases dramatically over the course of the
simulation.

ConclusionConclusion

In this tutorial, we looked at how to model surface diffusion of Pt adatoms using a simple Morse
interaction potential. The initial configuration was 7 lone Pt adatoms and the final configuration was a
compact 7 atom island. The AKMC simulation modeled longer than 0.1 s of dynamics and the formation
time of the compact island took 3.4 ms at 300 K. If a molecular dynamics simulation with a 1 fs timestep
had been performed instead, it would have taken 3.4 billion steps to reach the compact island formation.
Thus the use of AKMC allowed us to model reaction dynamics on a timescale that is virtually
unaccessible using molecular dynamics.

ReferencesReferences

[1] (1,2,3)
Rye Terrell, Matthew Welborn, Samuel T. Chill, and Graeme Henkelman. Database of atomistic reaction
mechanisms with application to kinetic monte carlo. J. Chem. Phys., 137:014105, 2012.
doi:10.1063/1.4730746.

 Previous

15/16

© Copyright 2023 Synopsys, Inc. All Rights Reserved.

16/16

	Table of Contents
	Adaptive Kinetic Monte Carlo Simulation of Pt Island Ripening
	Introduction
	Creating the initial configuration
	Setting up the AKMC Simulation
	Adding the calculator

	Running the Simulation
	Analyzing the AKMC Simulation
	AKMC Log File
	Kinetic Monte Carlo Analyzer
	Markov Chain Analyzer

	Conclusion
	References

