
1
2
2
3
4
8
9

10
13

Table of Contents

Table of Contents
Exploring Graphene

Build a graphene sheet
Build a CNT
Transmission spectrum of a GNR
Twisted nanoribbon

Transmission spectrum
Möbius nanoribbon
Buckling a graphene sheet

1/14

Downloads & Links

 PDF
 TubeWrapper
 FunWithGraphene
Basic QuantumATK Tutorial
ATK Reference Manual
 Moebius.py

Docs » Tutorials » Tubes, ribbons and other 1D nanostructures » Exploring Graphene

Exploring Graphene

In this tutorial you will build a range of graphene structures and study some of their properties. With
QuantumATK you can easily twist and stretch the structures using plug-in modules. You can then use
QuantumATK to calculate their electronic and vibrational properties. You will also learn to automate
calculations on large structures using Python scripting.

 Hint

In many QuantumATK projects (depending on the study of course) you will need the appropriate
plugins/AddOns, which can be installed via the AddOn Manager.

In this particular tutorial, you will need the  TubeWrapper.zip and CNTBuilder plugins. Please check
that these are available, and install them if they are not. You can install addons following the
instructions in the How to create AddOns for QuantumATK page.

Build a graphene sheet

Open the QuantumATK Builder . It is then easy to create a graphene sheet using a plugin; simply click
Add ‣ From Plugin ‣ Nanosheet. Leave the option for Chemical Properties at defaults. In the Geometry
options, choose a chiral vector of (n,m)=(8,0), and click Build.

 QuantumATK

 Try it!

 QuantumATK

 Contact

2/14

You now have a basic “building block” for the structure. Use the Bulk Tools ‣ Repeat plugin to repeat it 10
times along the C-direction:

Build a CNT

You can now use the TubeWrapper plugin to wrap the nanosheet into a carbon nanotube (CNT). It is
possible to turn the nanosheet into an open or a closed cylinder:

3/14

Transmission spectrum of a GNR

Let us calculate the electronic transmission spectrun of a graphene nanoribbon (GNR). First, build the
ribbon using the Add ‣ From Plugin ‣ Nanoribbon plugin. Choose chiral indices (n,m)=(1,1) and repeat the
structure 3 times the C-direction:

 Note

In order to correctly calculate the transmission spectrum for a bulk system, the bulk must qualify as a
valid device electrode. This requires that the C-axis is perpendicular to the A,B plane, and that it is
sufficiently long that the atoms in the unit cell only have Hamiltonian matrix elements with atoms in
the nearest neighbour cells along C. This condition is usually fullfilled if the C-vector is longer than 7 Å.

4/14

Next, transfer the structure to the Script Generator using the botton, and double-click the New
Calculator icon to add a calculator block to the script.

First, change the default output file to ribbon11_bulk.hdf5 .

Then open the added calculator block to start editing the settings.

Select the Extended Huckel calculator, and make sure the number of k-points is 1 for the A and B
directions, and high for the C-direction, e.g. 100 k-points along C.

In the Huckel basis set options, select Cerda.Carbon [graphite] for carbon and Cerda.Hydrogen [C2H4]
for hydrogen.

Finally, add a TransmissionSpectrum block to the script, and save the Python script as
ribbon11_bulk.py .

5/14

Send the script to the Job Manager in order to execute it. The job starts when you click the icon.

6/14

When the calculation is finished (it will run extremely fast), locate the output file
ribbon11_twist0_nscf.hdf5 in the QuantumATK file browser window. Select the file and notice that the
contents of the file are displayed in the QuantumATK panel:

You can now select the TransmissionSpectrum object, which has this icon:

7/14

and use the 2D Plot or Transmission Analyzer plugins to plot the electronic transmission spectrum.

Twisted nanoribbon

In this section you will learn how to twist a graphene nanoribbon using the QuantumATK Twister plugin,
and then compute the transmission spectrum.

Open the Builder, and select the nanoribbon created in the previous section. Then use the Bulk Tools ‣
Repeat tool to repeat the configuration 7 times in the C direction:

Then open the Coordinate Tools ‣ Twister plugin, and set a “Twist angle” of 72 degrees and a “Non-
twisting zone” of 9 Å. Click Apply to perform the twisting operation.

Certain parts of the system to the left and right of the structure are not twisted; the length of the non-
twisted part is specified by the value of “Non-twisting zone”. The rest of the structure is twisted by the

8/14

sepcified angle.

Transmission spectrum

You will now calculate the transmission spectrum of the twisted graphene nanoribbon. First, you need to
convert the twisteds ribbon into a device – use the Device Tools ‣ Device from Bulk tool for this.

Then rename the device configuration as GNR_twist and send it to the Script Generator to create the
required ATK Python script.

In the Scripter, add the following script blocks:

 New Calculator

 Transmission Spectrum

Open the New Calculator block and use the following settings:

9/14

“ATK-SE: Extended Hückel (Device)” calculator;

1x1x100 k-point grid;

“Cerda.Carbon [graphite]” basis set for C and “Cerda.Hydrogen[C2H4]” basis set for H.

Select the following settings in TransmissionSpectrum block:

energy range of [-1,1] eV and 201 energy points;

Krylov self-energy calculator;

1x1 k-point grid.

Then save the script as GNR_twist.py and execute it using the Job Manager. This calculation will take
just a few minutes.

The HDF5 data file GNR_twist.hdf5 should now have appeared on the QuantumATK LabFloor. Select the
TransmissionSpectrum item and use the Transmission Analyzer plugin to visualize the computed
transmission spectrum.

Note that the transmission peak has shifted down in energy as compared to the non-twisted ribbon. The
twist represents a source of electron scattering, since it breaks the translational symmetry of the non-
twisted ribbon electrodes along the transport direction.

Möbius nanoribbon

Next, we are going to create a Möbius nanoribbon. Download the script  Moebius.py, which is also
reproduced below. The script loads a basic nanoribbon from the file nanoribbon.hdf5 , then performs the
required operations of repeating, twisting, and wrapping the ribbon, and finally saves the Möbius ribbon in
moebius.hdf5 .

 1 from NL.Math.Utilities import rotationMatrix
 2 import math
 3 from QuantumATK import *
 4
 5 def twister_displacement(x, rotation_angle_per_z, rotation_axis,
 6 rotation_axis_center, z_start, z_end):
 7 """
 8 Function for twisting a 1-d structure
 9 @param x : Coordinates of 1-d structure

10/14

 9 @param x : Coordinates of 1-d structure
10 @param rotation_angle_per_z : size of twist in angle/length
11 @param rotation_axis : axis to apply twist along
12 @param rotation_axis_center : center of the rotation axis
13 @param z_start : z value for starting the twist
14 @param z_end : z value for ending the twist
15 """
16
17 # do not twist for z > z_end
18 z = x[2]
19 z = min(z,z_end)
20 # do not twist for z < z_start
21 z = z - z_start
22 z = max (z,0.0)
23 # find twist angle
24 theta = z*rotation_angle_per_z
25 # calculate the rotation matrix
26 rotation_matrix = rotationMatrix(theta, *rotation_axis)
27 # apply rotation
28 return rotation_axis_center+numpy.dot(rotation_matrix, x-rotation_axis_center)
29
30 def wrapping_displacement(x, width, wrapping_angle):
31 """
32 Function for converting a nanosheet coordinate into a partly wrapped nanotube
33 @param x : Coordinates of nanosheet atom
34 @param width : Width of the nano-sheet
35 @param wrapping_angle : maximum wrapping angle of the nanotube in radians
36 """
37 # calculate the average radius of the incomplete wrapped tube
38 radius = width/wrapping_angle
39 # find the angle of the current atom
40 angle = (x[2]-width/2.)/radius
41 # calculate the radius of the current atom
42 atom_radius = radius+x[1]
43
44 # return atom position of the wrapped atom
45 return numpy.array([x[0], atom_radius*math.cos(angle),atom_radius*math.sin(angle)])
46
47 def Moebius(ribbon, n, m, repetition):
48 """
49 Function for generating a moebius molecule
50 @param n : Chiral vector index
51 @param m : Chiral vector index
52 @param repetition : Repetition along z
53 """
54
55 # build n,m ribbon
56 #ribbon = NanoRibbon(n,m)
57 ribbon = ribbon.repeat(1,1,repetition)
58
59 # get properties of the ribbon
60 lattice = ribbon.bravaisLattice()
61 elements = ribbon.elements()
62 cartesian_coordinates=ribbon.cartesianCoordinates().inUnitsOf(Angstrom)
63
64 # calculate the length of the 1-d structure
65 z_length = numpy.linalg.norm(lattice.primitiveVectors()[2].inUnitsOf(Angstrom))
66
67 # calculate twist parameters
68 rotation_angle_per_z = math.pi /z_length
69 rotation_axis = numpy.array([0,0,1])
70 rotation_axis_center = numpy.sum(cartesian_coordinates,axis=0)/len(cartesian_coordinates)
71
72 # define a function of one variable, f(c), for displacing the atoms
73 f = lambda c : twister_displacement(c, rotation_angle_per_z, rotation_axis,
74 rotation_axis_center, 0.,z_length)
75 # apply the function to find new displaced coordinates
76 cartesian_coordinates = numpy.apply_along_axis(f, 1, cartesian_coordinates)

11/14

77 cartesian_center = numpy.sum(cartesian_coordinates,axis=0)/len(cartesian_coordinates)
78 cartesian_coordinates = cartesian_coordinates - cartesian_center
79
80
81 # define a function of one variable, f(c), for displacing the atoms
82 f = lambda c : wrapping_displacement(c, z_length,2.0*math.pi)
83 # apply the function to find new displaced coordinates
84 cartesian_coordinates = numpy.apply_along_axis(f, 1, cartesian_coordinates)
85
86 return MoleculeConfiguration(
87 elements=elements,
88 cartesian_coordinates=cartesian_coordinates * Angstrom
89)
90
91 ribbon = nlread('ribbon.nc', BulkConfiguration)[-1]
92 moebius = Moebius(ribbon,1,1,100)
93 nlsave('moebius.nc', moebius)

You first need to build a basic nanoribbon. Use the Add ‣ From Plugin ‣ Nanoribbon plugin and select, for
example, the chiral vector (n,m)=(6,6). Save the created ribbon in the Project Folder as ribbon.hdf5 .

Then make sure  Moebius.py is also located in the Prpject Folder, and execute it using the Job
Manager or from the command line. The output file moebious.hdf5 should appear in the Project Files list
and the Möbius configuration should appear on the LabFloor. Use the Viewer to visualize the structure.

12/14

Buckling a graphene sheet

In this final section you will learn how to buckle a graphene sheet using the QuantumATK Buckler plugin.

First, create a nanosheet as shown above in section Build a graphene sheet. This time, repeat the
nanosheet 30 times in the C direction.

Then open the Coordinate Tools ‣ Buckler plugin, and set the “Buckling amplitude” to 2 Å and the “Non-
buckling zone” to 9 Å. Select “NY = 1” and “NZ = 1” to enable buckling along the Y and Z axes.

Click Apply to perform the buckling operation.

13/14

Next  Previous

© Copyright 2023 Synopsys, Inc. All Rights Reserved.

14/14

	Table of Contents
	Exploring Graphene
	Build a graphene sheet
	Build a CNT
	Transmission spectrum of a GNR
	Twisted nanoribbon
	Transmission spectrum

	Möbius nanoribbon
	Buckling a graphene sheet

