
1
2
2
3
3
4
4
5

5
5
6
7
8
8

10
12

Table of Contents

Table of Contents
Accessing QuantumATK internal variables

Internal matrices accessible in QuantumATK
Multi-terminal conduction

Device calculations
Calculating the transmission between the 4 leads

Details of the script
Running the script

Transmission projection
Running the calculations
Analyzing the transmission
Projecting the transmission

Running the scripts
Plotting the MPSH states

AC conductance
References

1/12

Downloads & LinksDownloads & Links

 PDF
Introduction to QuantumATK
ATK Reference Manual
Transport calculations with QuantumATK

Docs » Tutorials » Miscellaneous » Accessing QuantumATK internal variables

Accessing QuantumATK internal variablesAccessing QuantumATK internal variables

Version:Version: 2016.0

The purpose of this tutorial is to illustrate how to extract internal quantities from QuantumATK. In the
following, the quantities are briefly described and several sections then illustrate with examples how the
information can be used to compute different sorts of transport coefficients.

Internal matrices accessible in QuantumATKInternal matrices accessible in QuantumATK

The table below lists some of the internal matrices in QuantumATK, e.g. the Hamiltonian
 and the overlap matrix

. The commands listed in the left-hand column in the table allow users to extract these matrices through
the so-called “low level entities” module in QuantumATK.

Table 1 Internal matrices accessible in QuantumATK. Further description of the variables can be
found in the ATK Reference Manual.¶

CommandCommand SymbolSymbol

orbitalInfo()

calculateHamiltonianAndOverlap()

calculateDensityMatrix()

calculateSelfEnergy()

calculateRetardedGreenFunction()

 QuantumATKQuantumATK

 Try it!

 QuantumATK

 Contact

H
S

[(i, l, m), ⋯]

H(k), S(k)

D(k)

ΣL/R(E, k)

Gr(E, k)

2/12

calculateGreenFunctionComponent()

calculateDynamicalMatrixAndOverlap()

calculatePhononSelfEnergy()

calculatePhononRetardedGreenFunction()

calculatePhononGreenFunctionComponent()

CommandCommand SymbolSymbol

You will in this tutorial see examples of how to extract these matrices and use them to compute transport
coefficients. The underlying calculation engine to be used here is ATK-SemiEmpirical (ATK-SE), but could
also have been ATK-DFT.

Multi-terminal conductionMulti-terminal conduction

You will in this section consider a 4-probe graphene device, and calculate the transmission between each
of the four probes. For the calculation, you will extract the self energies of each of the four probes and
implement the Fisher–Lee transmission function in a small QuantumATK Python script. The example is
inspired by the 4-probe setup in [1].

Device calculationsDevice calculations

You should first use the Slater–Koster tight-binding method to compute the ground state and zero-bias
transmission at the Fermi level for the 4-terminal graphene device illustrated below.

Start up QuantumATK with a new project, for instance named “4probe graphene”. Then download this pre-
made QuantumATK Python script and save it in the project folder: 4probe_pi_model.py. It sets up the
device configuration with a Slater–Koster calculator, and then performs the calculation and computes the
transmission at the Fermi level. All output is saved in 4probe_pi_model.hdf5 .

Run the script, either using the Job ManagerJob Manager or from command line:

$ atkpython 4probe_pi_model.py > 4probe_pi_model.log

The script will finish very quickly, and reports the Fermi level transmission in the log file:

GL/R(E, k)

C(k), M(k)

ΠL/R(E, k)

Dr(E, k)

DL/R(E, k)

3/12

+--+
Transmission Spectrum Report
Left electrode Fermi level = 3.851459e-01 eV
Right electrode Fermi level = 3.851459e-01 eV
Energy zero = 3.851459e-01 eV
+--+
 energy T(up)
 eV
 0.000000e+00 7.553672e-01

Calculating the transmission between the 4 leadsCalculating the transmission between the 4 leads

The calculated transmission in the previous section is from the two leads on the left-hand side of the
device, which are tagged “lead1” and “lead2”, to the two leads on the right-hand side of the device, tagged
“lead3” and “lead4”.

 TipTip

You can check the tags if you send the device configuration to the Builder.

ATK has no analysis functions for calculating transmission between individual leads. For such a
calculation, you need to calculate the broadening function of each lead,

, and then evaluate the Fisher–Lee relation,

where
 is the retarded Green function of the device.

The downloadable script 4probe_trans.py performs this calculation. The script extracts internal
QuantumATK quantities for the calculation, and the following section discusses details of the script.

Details of the scriptDetails of the script

The first part of the script is a utility function, which can zero out all entries in the
 matrix, except for the orbitals belonging to the indices of the specified atoms. To obtain a list of the

orbitals on the atoms, the function uses a ProjectionList object.

Utility function to project out Gamma of the lead1, lead2, lead3, lead4
def projectGamma(configuration, gamma, indices):
 """Zero all components in Gamma which are not in the indices list
 @param configuration : The configuration giving the full Gamma
 @param gamma : The full gamma
 @param indices : Indices of the atoms to project onto

 @return : The projected gamma
 """

 projection_list = ProjectionList(indices)
 orbital_index = projection_list.orbitalIndex(configuration)
 # Make a filter matrix consisting of 1's at the orbital_index
 filter = 0*gamma
 for i in orbital_index:
 for j in orbital_index:
 filter[i,j] = 1
 return gamma*filter

Another important part is the lines shown below, which use the tags on the device configuration to
determine the indices of the atoms in each electrode.

Γi

Tij = Tr[ΓiG
rΓj(Gr)†],

Gr

Γ

4/12

Project onto Lead 1, 2, 3, 4
lead1_index = device_configuration.indicesFromTags('lead1')
Gamma1 = projectGamma(device_configuration, Gamma_L, lead1_index)
lead2_index = device_configuration.indicesFromTags('lead2')
Gamma2 = projectGamma(device_configuration, Gamma_L, lead2_index)
lead3_index = device_configuration.indicesFromTags('lead3')
Gamma3 = projectGamma(device_configuration, Gamma_R, lead3_index)
lead4_index = device_configuration.indicesFromTags('lead4')
Gamma4 = projectGamma(device_configuration, Gamma_R, lead4_index)

The rest of the script should be self explanatory to experienced QuantumATK users.

Running the scriptRunning the script

Save the script and execute it. It should produce the following output:

T: L (1,2) -> R (3,4) : 0.756157362529
T: Up(1,3) -> Down (2,4) : 0.232988936132

Transmission Matrix
[[3.99103191 0.05825146 0.04799848 0.05832079]
 [0.05825146 4.60578343 0.05853133 0.59130676]
 [0.04799848 0.05853133 3.74982393 0.05788536]
 [0.05832079 0.59130676 0.05788536 1.96636417]]

The script reports the transmission matrix,
. By summing up

,
 it is possible to get the transmission from left to right, which is identical (within numerical noise), to

the value from the bare QuantumATK transmission calculation.

By summing up the transmission coefficients between the upper leads and the lower leads, it is possible
to calculate the up-down transmission, as in [1].

Transmission projectionTransmission projection

You will here learn how to resolve a transmission calculation into molecular projected self-consistent
Hamiltonian (MPSH) eigenstates. In this way, you can analyze how large a fraction of a transmission
function is propagating through a particular eigenstate or part of the system. As an example, you will
investigate a dithiol-benzene (DTB) ring between two gold surfaces, see [2].

Running the calculationsRunning the calculations

Use the pre-made QuantumATK Python script au_dtb_au.py, which defines the Au–DTB–Au device
configuration, performs a DFT-SE calculation using the extended Hückel method, and computes the Γ-
point transmission in an energy range

1 eV around the Fermi level. The calculations will finish in a few minutes.

Tij

i ∈ L
i ∈ R

±

5/12

Analyzing the transmissionAnalyzing the transmission

Once the calculation has finished, the file au_dtb_au.hdf5 will appear on the LabFloor. Select the
TransmissionSpectrumTransmissionSpectrum item and open the Transmission AnalyzerTransmission Analyzer.

The Γ-point transmission spectrum has a peak 0.68 eV above the Fermi level. Select this peak using the
mouse, and click EigenvaluesEigenvalues to calculate the transmission eigenvalues. There is one dominating
eigenvalue very close to 1, and several negligible eigenvalues.

Remove the tick from all except the highest eigenvalue, and click the EigenstatesEigenstates button. This will
calculate the scattering eigenstate in real space, and the Viewer will pop up with a visualization of it –
choose the “isosurface” visualization option if prompted. You can then use the Properties ‣ Isosurfaces
options to tune the visualization.

6/12

Fig. 36 Largest transmission eigenstate for energy 0.68 eV. The isosurface indicates an absolute value of
0.05 Å , and the colors indicate the phase of the eigenstate. ¶

Projecting the transmissionProjecting the transmission

We would now like to project the transmission eigenstate onto the MPSH states of the molecule, to find
the orbitals that carry the transmission.

The scattering state,
, is expanded in basis orbitals,
, through expansion coefficients

,

We now diagonalize the self-consistent Hamiltonian projected onto DTB,

where
 are the expansion coefficients of the MPSH states.

Next, we expand the projection of the scattering state of the DTB molecule in the MPSH states,

where the expansion coefficients are given by
. Through the magnitude of each

, we can get the relevance of each MPSH state, and

Below is given a script, projection.py, which calculates the largest eigenvalue scattering state [3] at
energy 0.68 eV, and calculates the projection weight of each MPSH state,

-3/2

ψ(r)
ϕi(r)
vi

ψ(r) =
∑

i viϕi(r).

H DTBcα = εαSDTBcα,

cα

v =
∑

α aαcα,

aα = c†
αSDTBv

aα

∑
α |aα|2 = v†SDTBv.

pα = .
|aα|2

v†SDTBv

7/12

from QuantumATK import *
from utilities import vectorToGrid, scatteringStates, averageFermiLevel
import scipy

Read the configuration
device_configuration = nlread('au_dtb_au.hdf5', DeviceConfiguration)[0]
Get H and S
H, S = calculateHamiltonianAndOverlap(device_configuration)
H = H.inUnitsOf(eV)

Calculate average Fermi level
average_fermi_level = averageFermiLevel(device_configuration)
energy = average_fermi_level+0.68*eV

Get index of orbitals on the Phenyl ring
projection_list = ProjectionList(elements = [Carbon, Hydrogen])
orbital_index = projection_list.orbitalIndex(device_configuration)
Project H, S onto the Phenyl ring (MPSH)
H_dtb = H[orbital_index,:][:, orbital_index]
S_dtb = S[orbital_index,:][:, orbital_index]

Calculate the mpsh eigenfunctions
w, v = scipy.linalg.eigh(H_dtb, S_dtb)

Calculate the scattering eigenstates
T, c = scatteringStates(device_configuration, energy)

Take the highest eigenstate
eigenvector = c[:,0]
Project the eigenstate onto the DTB molecule
ev_dtb = eigenvector[orbital_index]
Get the norm of the projected eigenstate
norm_ev = numpy.dot(numpy.conj(ev_dtb.transpose()), numpy.dot(S_dtb, ev_dtb))

Loop over all MPSH
for i in range(len(w)):
 # Resolve the eigenstate into the MPSH states
 coeff = numpy.dot(numpy.conj(v[:,i].transpose()), numpy.dot(S_dtb, ev_dtb))
 # Find the strength of the MPSH projection
 p = numpy.conj(coeff)*coeff
 p = numpy.abs(p/norm_ev)
 # Print out the weight of each non negligible projection
 if p > 0.001:
 print(i, p)

The script uses some utility functions from the script utilities.py.

Running the scriptsRunning the scripts

Save both scripts, and execute projection.py using the Job Manager or from command line. It will
generate the following output:

8 0.00686834365658
11 0.00467610628863
15 0.981647336721
17 0.00670447660685

The MPSH state number 15 is clearly the one with the largest projection.

Plotting the MPSH statesPlotting the MPSH states

8/12

The script mpsh.py shown below will save MPSH states 8, 11, 15, and 17 into the HDF5 data file
mpsh.hdf5 . The script uses the function vectorToGrid() , which performs the folding of the eigenvector

with the basis functions.

from QuantumATK import *
from utilities import vectorToGrid, averageFermiLevel
import scipy

Read the configuration
device_configuration = nlread('au_dtb_au.hdf5', DeviceConfiguration)[0]
Get H and S
H, S = calculateHamiltonianAndOverlap(device_configuration)
H = H.inUnitsOf(eV)

Calculate average Fermi level
average_fermi_level = averageFermiLevel(device_configuration)

Get index of orbitals on the Phenyl ring
projection_list = ProjectionList(elements=[Carbon, Hydrogen])
orbital_index = projection_list.orbitalIndex(device_configuration)
Project H, S onto the Phenyl ring
H_dtb = H[orbital_index,:][:, orbital_index]
S_dtb = S[orbital_index,:][:, orbital_index]

Calculate the eigenfunctions
w, v = scipy.linalg.eigh(H_dtb, S_dtb)
Calculate eigen energies relative to the fermi level
eigen_energies = (w*eV-average_fermi_level)

Save eigenstates number 13-17
for i in [8, 11, 15, 17]:
 print('eigenenergy ', i, eigen_energies[i])
 # Put the eigenvector into a vector of length of all orbitals
 number_orbitals = H.shape[0]
 eigenvector = numpy.zeros(number_orbitals, dtype=complex)
 eigenvector[orbital_index] = v[:,i]
 grid = vectorToGrid(eigenvector, device_configuration)
 nlsave('mpsh.hdf5', grid)

Run the script, and when finished drag and drop the object with ID gID002 from mpsh.hdf5 onto the
Viewer. Then add the device configuration to the plot by drag and dropping it from au_dtb_au.hdf5 . By
adjusting the plot properties, you should be able to get the image shown below.

9/12

Fig. 37 Isosurface with isovalue 0.07 Å for MPSH state number 15.¶

 NoteNote

The vectorToGrid() method uses a finer grid spacing than the value set by the HuckelCalculator. This
is why the image above has high-quality resolution.

AC conductanceAC conductance

The scripts presented in this section can be used to calculate the AC conductance of a nanodevice within
the wide-band limit. The implementation follows closely the work by Yamamoto et al. [4].

We will here consider the (10,10) carbon nanotube device illustrated below, and use again the extended
Hückel method with a

-model. Use cnt_device.py to perform the ground state device calculation.

-3/2

π

10/12

Fig. 38 (10,10) CNT device configuration with a central region length of 24.61 Å.¶

The admittanceadmittance is defined as the inverse of the impedance, and is a measure of how easily a device will
allow a current to flow. Download the scripts cnt_admittance.py and admittance.py to your
QuantumATK project folder. Then execute cnt_admittance.py, which computes and plots the real (G)
and imaginary (B) parts of the AC admittance for the CNT device.

Fig. 39 Real (G) and imaginary (B) parts of the AC admittance for a (10,10) CNT device. ¶

 NoteNote

11/12

Next

Since the implementation of the AC conductance is done in Python and uses dense matrices, the
calculation is computationally inefficient, and for systems with a large number of orbitals the
calculation can take substantial time.

ReferencesReferences

[1] (1,2)
M. Koleini, M. Paulsson, and M. Brandbyge. Efficient organometallic spin filter between single-wall carbon
nanotube or graphene electrodes. Phys. Rev. Lett., 98:197202, May 2007.
doi:10.1103/PhysRevLett.98.197202.

[2]
K. Stokbro, J. Taylor, M. Brandbyge, J.-L. Mozos, and P. Ordejón. Theoretical study of the nonlinear
conductance of di-thiol benzene coupled to Au(1 1 1) surfaces via thiol and thiolate bonds. Computational
Materials Science, 27(1–2):151 – 160, 2003. doi:10.1016/S0927-0256(02)00439-1.

[3]
M. Paulsson and M. Brandbyge. Transmission eigenchannels from nonequilibrium green’s functions.
Phys. Rev. B, 76:115117, Sep 2007. doi:10.1103/PhysRevB.76.115117.

[4]
T. Yamamoto, K. Sasaoka, S. Watanabe, and K. Watanabe. Two chirality classes of ac quantum transport
in metallic carbon nanotubes. Phys. Rev. B, 81:115448, Mar 2010. doi:10.1103/PhysRevB.81.115448.

 Previous

© Copyright 2023 Synopsys, Inc. All Rights Reserved.

12/12

	Table of Contents
	Accessing QuantumATK internal variables
	Internal matrices accessible in QuantumATK
	Multi-terminal conduction
	Device calculations
	Calculating the transmission between the 4 leads
	Details of the script
	Running the script

	Transmission projection
	Running the calculations
	Analyzing the transmission
	Projecting the transmission
	Running the scripts
	Plotting the MPSH states

	AC conductance
	References

