
1
2
3
6
9
9

10
12
14
16
19
20
21
22
23
23

Table of Contents

Table of Contents
Phonon-limited mobility in graphene using the Boltzmann transport equation

Geometry and electronic structure of graphene
Phonons in Graphene
Mobility of graphene

1. Hamiltonian derivatives
2A. Electron-Phonon couplings: (k,q)-dependent method
3A. Mobility: (k,q)-dependent method
2B. Electron-Phonon couplings: energy-dependent method
3B. Electron mobility: energy-dependent method
Temperature dependence of the mobility: (k,q)-dependent method vs. energy-dependent method

Convergence of q- and k-point sampling
Theory section

Relaxation time approximation
Mobility

References

1/23

Downloads & LinksDownloads & Links

 PDF version
DynamicalMatrix
HamiltonianDerivatives
ElectronPhononCoupling
Mobility

Basic QuantumATK Tutorial
QuantumATK Reference Manual

Docs » Tutorials » New or Recently Updated Tutorials »
Phonon-limited mobility in graphene using the Boltzmann transport equation

Phonon-limited mobility in graphene using the BoltzmannPhonon-limited mobility in graphene using the Boltzmann
transport equationtransport equation

Version:Version: Q-2019.12-SP1

In this tutorial you will learn how to calculate the phonon-limited mobility in graphene. The mobility will be
calculated using the Boltzmann transport equation (BTE) with the electronic structure, phonons and
electron-phonon coupling calculated using density functional theory (DFT).

The mobility
 will be calculated using two different methods to calculate the relaxation times
 entering the BTE:

1. Full angular (k,q)-dependenceFull angular (k,q)-dependence: in this method, the full dependency of
 on the electron and phonon wave vectors
 and
 is taken into account, so that

. In the following, we will refer to this as the (k,q)-dependent method(k,q)-dependent method.
2. Isotropic scattering rateIsotropic scattering rate: in this method, only the energy dependence of

 is considered, so that
, and

 is assumed to vary isotropically in momentum-space. In the following, we will refer to this as the
E-dependent methodE-dependent method.

As it will be shown, the two methods give essentially the same results, but the second method is
considerably faster than the first one.

In the theory section, you can read about the theoretical background. A more comprehensive description
can also be found in the paper [1].

 QuantumATKQuantumATK

 Try it!

 QuantumATK

 Contact

μ
τ

τ

k
q
τ = τ(k, q)

τ

τ = τ(E)
τ(E)

2/23

Geometry and electronic structure of grapheneGeometry and electronic structure of graphene

In the BuilderBuilder, add a graphene configuration by clicking Add ‣ From Database and searching for
‘Graphene’ in the structure database.

Next, you have to increase the vacuum gap above and below the graphene. Click on Bulk Tools ‣ Lattice
parameters and set the lattice parameter along the C-direction to C = 20 Å.

Center the configuration by clicking on Coordinate Tools ‣ Center, and press Apply. Now click on the
button to send the structure to the Script GeneratorScript Generator. In the main panel of the Script GeneratorScript Generator, set
the Results fileResults file to Graphene_relax.hdf5 ,

To perform an accurate calculation of the relaxation times
 and the mobility
, the first important step is to optimize the lattice parameters A and B and calculate the electronic band

structure. In order to do this, add an LCAOCalculatorLCAOCalculator block and in the Main section set the following
parameters:

 Calculators ‣ LCAOCalculator

Set the Exchange correlationExchange correlation to LDA

Set the PseudopotentialPseudopotential to FHI

Set the Occupation methodOccupation method to Methfessel-Paxton

Set the Density mesh cutoffDensity mesh cutoff to 90 Ha

Set the k-point samplingk-point sampling to:

 = 33

 = 33

 = 1

On the Iteration ControlIteration Control tab, Set the ToleranceTolerance to 0.000001, i.e. 10

τ
μ

kA

kB

kC

-6

3/23

 Optimization ‣ OptimizeGeometry

Set the Force toleranceForce tolerance to 0.001 eV/Å

Untick Fix lattice vectorsFix lattice vectors in the

4/23

 and
 directions.

 Analysis ‣ Bandstructure

Set the number of Points per segmentPoints per segment to 100

Set the Brillouin zone routeBrillouin zone route to G, K, M, G

Now, send the script to the Job managerJob manager, save it as Graphene_relax.py , and click on the button to
run the calculation.

When the calculation is done, click on the BandstructureBandstructure object contained in the file

Graphene_relax.hdf5 on the LabFloorLabFloor and use the Bandstructure AnalyzerBandstructure Analyzer to visualize the band structure.

x

y

5/23

By placing the mouse cursor on top of a band, information about the band is shown. You see that the
valence band (highlighted in yellow in the figure above) is number 3 and the conduction band is number 4.
These are the two electronic bands relevant for the calculation of the mobility, and in the following we will
concentrate on these two bands.

Phonons in GraphenePhonons in Graphene

The next step is to calculate the dynamical matrix of graphene. In order to test the quality of the result you
will also calculate the phonon band structure, which is based on the calculated dynamical matrix.

Open the Script generatorScript generator , and create a new script:

Add an Analysis from File block and select BulkConfiguration_1 in Graphene_relax.hdf5 .

Add a Study Objects ‣ DynamicalMatrix block and modify the following settings:

Set RepetitionsRepetitions to Custom

Set the Number of repetitionsNumber of repetitions to:

 = 11

 = 11

 = 1

nA

nB

nC

6/23

 NoteNote

In previous versions of QuantumATKQuantumATK it was necessary to manually scale down the number of k-points
when doing a DynamicalMatrixDynamicalMatrix or HamiltonianDerivativesHamiltonianDerivatives calculation to take into account the repeated
cell. From QuantumATK-2019.03QuantumATK-2019.03 and later versions the k-points are automatically scaled to maintain
the same accuracy as the unit cell, and we can simply re-use the calculator settings.

7/23

 TipTip

Due to the large dimensions of the
 graphene super cell (242 atoms), the calculation of the DynamicalMatrix object is rather time

consuming. However, the calculation can be parallelized over the atomic displacements. Since there
are two atoms in the graphene unit cell, and each is displaced in the

,
 and
 directions, there are in total 6 calculations to be performed. Maximum efficiency is obtained when

the number of calculations times the value of the parameter Processes per displacement matches the
total number of cores used for the calculations. In the present case, the calculation takes about 30
minutes if Processes per displacement = 4 and the calculation is run on 24 cores.

Add an Analysis ‣ PhononBandstructure block and set the following parameters:

Set the number of Points per segmentPoints per segment to 100

Set the Brillouin zone routeBrillouin zone route to G, M, K, G

Finally, in the main panel of the Script GeneratorScript Generator set the Default output fileDefault output file to Graphene_dynmat.hdf5 ,
send the script to the Job managerJob manager, save it as Graphene_dynmat.py and click on the button to run
the calculation.

 WarningWarning

Remember to make the file Graphene_relax.hdf5 available for the script if you are running on a cluster.
In the Job ManagerJob Manager you can use the I/OI/O tab to transfer additional files together with a script. In this
case, you may also need to modify the path in the script before submitting to the cluster, to make sure
it points at the correct location of the file.

When the calculation is done, go back to the in the LabFloorLabFloor, and inspect the

PhononBandstructurePhononBandstructure object contained in the file Graphene_dynmat.hdf5 using Compare dataCompare data or
PhononBandstructure AnalyzerPhononBandstructure Analyzer. The calculated phonon band structure should match with that shown in
the figure below.

11 × 11

x

y

z

8/23

Fig. 29 Phonon bandstructure. There are three acoustic modes: The lowest, out-of-plane mode (ZA) has a
 for small

, while the two next have linear
-dependence with a constant velocity for small
. The transverse acoustic (TA) mode is lower in energy than the longitudinal acoustic (LA) mode. ¶

Mobility of grapheneMobility of graphene

In the following, the procedure to calculate the electron mobility in graphene will be described. Provided
that one has already calculated the electronic structure and dynamical matrix of the system, the following
three steps are necessary to evaluate the mobility:

1. Calculation of the Hamiltonian derivativesHamiltonian derivatives
2. Calculation of the Electron-phonon couplingsElectron-phonon couplings
3. Calculation of the MobilityMobility

The two methods to calculate
 described above differ in the way in which steps 2 and 3 are carried out. These two steps will therefore

be described separately for each method. The procedure for the (k, q)-dependent method(k, q)-dependent method is outlined in
sections 1, 2A and 3A, whereas the procedure for the energy-dependent methodenergy-dependent method is outlined in in sections
1, 2B and 3B

1. Hamiltonian derivatives1. Hamiltonian derivatives

In order to calculate the electron-phonon coupling matrix, it is necessary to calculate the derivative of the
Hamiltonian

 with respect to the coordinate of the
-th atom along the Cartesian direction
.

Open the Script generatorScript generator , and modify the script as follows:

Add an Analysis from File block and select BulkConfiguration_1 in Graphene_relax.hdf5 .

Add a Study Objects ‣ HamiltonianDerivatives block and set the Number of repetitionsNumber of repetitions to:

∝ q2

q
q
q

μ

∂Ĥ/∂Ri,α
i
α

n
9/23

 = 11

 = 11

 = 1

 WarningWarning

It is important that the number of repetitions matches the calculation of the dynamical matrix.

In the main panel of the Script GeneratorScript Generator, set the Results fileResults file to Graphene_dHdR.hdf5 , send the script to
the Job managerJob manager, save it as Graphene_dHdR.py and click on the button to run the calculation.

 NoteNote

As for the DynamicalMatrixDynamicalMatrix, the calculation of the HamiltonianDerivativesHamiltonianDerivatives is rather time consuming,
but can be parallelized over the atomic displacements. In the present case, the calculation takes
around 1 hour if it is run on 24 cores with Processes per displacement = 4 .

2A. Electron-Phonon couplings: (k,q)-dependent method2A. Electron-Phonon couplings: (k,q)-dependent method

In order to calculate the lifetimes
 and the mobility

, we need to calculate the electron-phonon coupling matrix on a fine grid of
- and
-points.

Open the Script generatorScript generator , and modify the script as follows:

Add an Analysis from File block and select BulkConfiguration_1 in Graphene_relax.hdf5 .

nA

nB

nC

τ(k, q)
μ
k
q

10/23

Add an Analysis ‣ ElectronPhononCoupling block.

You will notice that two additional blocks have been also added:

 Study Objects ‣ DynamicalMatrix

 Study Objects ‣ HamiltonianDerivatives

In the present case, both the dynamical matrix and the Hamiltonian derivatives have been calculated
already and can be re-used. As they are study objects, this is automatically detected by QuantumATK if
the provided filename and other input parameters are the same. Open each of them and change the
repetitions to 11x11x1 and the filenames to Graphene_dynmat.hdf5 and Graphene_dHdR.hdf5 , respectively.

Now set the parameters in the Analysis ‣ ElectronPhononCoupling block as shown below. We will
sample k-points in a small area around the

-point at [1/3, 1/3, 0], and q-points in a small area around the
-point at [0,0,0].

 TipTip

If you are unsure of the coordinates of a particular symmetry point you may use the built-in
functionality of the BravaisLattice class, f.ex. like this:
k0=bulk_configuration.bravaisLattice().symmetryPoints()['K'])

 WarningWarning

K
Γ

11/23

For production calculations, it is strongly recommended to always converge the sampling resolution in
q- and k-space. The above settings are a result of such a study, with more information shown in the
appendix: Convergence of q- and k-point sampling

In the main panel of the Script GeneratorScript Generator, set the Results fileResults file to Graphene_eph.hdf5 . Send the script to
the Job managerJob manager, save it as Graphene_eph.py and click on the button to run the calculation.

 WarningWarning

For graphene, we need quite dense samplings in
- and
-space, and therefore we have chosen to sample very finely a small area around the relevant high-

symmetry points. This still includes the full angular dependence, but neglects inter-valley scattering.
We therefore recommend to sample the entire Brillouin zone if this could be an important effect.

 NoteNote

Sampling the
- and
-space using dense meshes means that the calculation might become very time consuming.

Contemporary versions of QuantumATK automatically detect the relevant regions of
- and
-space, and do not compute matrix elements which will not contribute, considerably decreasing the

computational time and memory requirements. The two parameters energy_tolerance and
initial_state_energy_range govern the filters which reduce the number of calculated coupling elements.
More information about these two parameters can be found on the manual page:
ElectronPhononCoupling .

As QuantumATK parallelizes over
- and
-points, a high number of MPI processes can be used if sufficient memory is available. In the present

case, the calculation took approximately 10 hours on a 16-core node on a cluster.

3A. Mobility: (k,q)-dependent method3A. Mobility: (k,q)-dependent method

Now open a new Script Generator window and add an Analysis from File block and then a Analysis
‣ Mobility block. In the Analysis from File block, select the file Graphene_relax.hdf5 and load
BulkConfiguration_1 included in the file. Remove the ElectronPhononCoupling , DynamicalMatrix
and HamiltonianDerivatives blocks, and replace them with a Custom blocks ‣ Code snippet block.
This allows us to easily add arbitrary code to any script without editing the full script manually. Open the
block, and write the following:

electron_phonon_coupling = nlread('Graphene_eph.hdf5', ElectronPhononCoupling)[0]

Set the parameters for the Analysis ‣ Mobility block as shown below:

Leave the MethodMethod at Full angular (k,q)-dependence

Set the Fermi shiftFermi shift to 0.13 eV

Untick Calculate Hall coefficients

k
q

k
q

k
q

k
q

12/23

 NoteNote

The Fermi shift of 0.13 eV corresponds to a carrier concentration of

In the main panel of the Script GeneratorScript Generator, set the Results fileResults file to Graphene_mu-full.hdf5 , send the script
to the Job managerJob manager, save it as Graphene_mu-full.py and click on the button to run the calculation.
It should take no more than a few minutes on a laptop.

 NoteNote

You will get a notification that the Mobility block is invalid. You can ignore this warning, as NanoLab
does not parse the Code snippet block and is thus unaware of the ElectronPhononCoupling object that
will be loaded there.

Once the calculation is done, select the file Graphene_mu-full.hdf5 , and on the LabFloorLabFloor, select the

 MobilityMobility object, and click on Text RepresentationText Representation. You should now see the following:

n = 1012cm−2

13/23

 +--+
Mobility Report
Input parameters:
Temperature = 300.00 K
Fermi level shift = 0.13 eV
Energy broadening = 0.0030 eV
q-grid refinement = 1
+--+
Trace of linear responce tensors:
+--+
Electrons:
Mobility = 2.34e+05 cm^2/(V*s)
Conductivity = 4.19e+01 S/m
Seebeck coefficient = -1.94e-05 V/K
Thermal conductivity = 2.43e-04 W/(m*K)
Carrier density (2D, xy) = 2.24e+06 cm^-2
Holes:
Mobility = 8.66e-04 cm^2/(V*s)
Conductivity = 1.19e-01 S/m
Seebeck coefficient = 1.14e-03 V/K
Thermal conductivity = 1.18e-05 W/(m*K)
Carrier density (2D, xy) = 1.72e+12 cm^-2
 +--+

The calculated electron mobility, highlighted in yellow, is
, and agrees well with previously reported data at room temperature and

 [2].

 NoteNote

Note that the carrier density listed here is significantly lower than
. The carrier density is calculated independently from the mobility, and converges much

more slowly than the mobility itself. In this tutorial, the focus is on achieving a converged value for the
mobility - converging also the carrier density would require inclusion of more

-points and/or a larger region in
-space in the ElectronPhononCouplingElectronPhononCoupling calculation. Alternatively, you can calculate the carrier density

with a finer sampling directly from the DensityOfStates object:  carrier_density_test.py.

 TipTip

Starting from version Q-2019.12, QuantumATK NanoLab includes a Mobility Analyzer. This will be
presented in a future update of this tutorial.

2B. Electron-Phonon couplings: energy-dependent method2B. Electron-Phonon couplings: energy-dependent method

We will now calculate the electron-phonon couplings to be used for the calculation of the energy-
dependent relaxation times

. We will assume that the relaxation times vary isotropically in
-space. This means that it will be sufficient to evaluate the electron-phonon coupling matrix for a number

of

2.34 ⋅ 105 cm2V−1s−1

n = 1012cm−2

n = 1012cm−2

k
k

τ(E)
k

k
14/23

-points along a line through one of the Dirac (K) points, thereby reducing significantly the computational
workload of the calculation.

Open the Script generatorScript generator , and modify the script as follows:

Add an Analysis from File block and select BulkConfiguration_1 in Graphene_relax.hdf5 .

Add an Analysis ‣ ElectronPhononCoupling block.

You will notice that two additional blocks have been also added:

 Study Objects ‣ DynamicalMatrix

 Study Objects ‣ HamiltonianDerivatives

In the present case, both the dynamical matrix and the Hamiltonian derivatives have been already
calculated and can be re-used. As they are study objects, this is automatically detected by QuantumATK if
the provided filename and other input parameters are the same. Open each of them and change the
repetitions to 11x11x1 and the filenames to Graphene_dynmat.hdf5 and Graphene_dHdR.hdf5 , respectively.

In the Analysis ‣ ElectronPhononCoupling block, modify the parameters as follows:

In the k-point samplingk-point sampling, set the Grid typeGrid type to Regular k-point grid, and the sampling parameters as
shown in the figure below.

 NoteNote

As you can see from the figure, the
-space is sampled only along a line!

In the q-point samplingq-point sampling, set the Grid typeGrid type to Regular q-point grid, and the sampling parameters as
shown in the figure below.

Set the Energy toleranceEnergy tolerance to 0.01 (eV) and the Initial state energy rangeInitial state energy range to go from -0.5 to 0.5.

k

k

15/23

In the main panel of the Script GeneratorScript Generator, set the Results fileResults file to Graphene_eph-line.hdf5 , send the
script to the Job managerJob manager, save it as Graphene_eph-line.py and click on the button to run the
calculation.

 NoteNote

Since here we sample the
-space only along a line, the calculation will in general be faster than the one described in section 2A.

In the present case, the calculation took approximately 50 minutes on a 16-core node on a cluster, or
about 1/10th of the full calculation in section 2A.

3B. Electron mobility: energy-dependent method3B. Electron mobility: energy-dependent method

We will now use a two-step procedure to evaluate the room-temperature mobility
 based on the energy-dependent relaxation times

:

In the first step, the
- and
-dependent relaxation times

 are evaluated along the line outward from the K-point.

In the second step, the values of
 are averaged in

-space to obtain the values of

k

μ
τ(E)

k
q
τ(k, q)

τ(k, q)
k
()

16/23

, which are then used to calculate the mobility
.

Now open a new Script Generator window and add an Analysis from File block and then a Analysis
‣ Mobility block. In the Analysis from File block, select the file Graphene_relax.hdf5 and load
BulkConfiguration_1 included in the file. Remove the DynamicalMatrix and HamiltonianDerivatives
objects and replace the Analysis ‣ ElectronPhononCoupling with a Custom blocks ‣ Code snippet

 block. Open the block, and write the following:

electron_phonon_coupling = nlread('Graphene_eph-line.hdf5', ElectronPhononCoupling)[0]

Finally, set the parameters in the Analysis ‣ Mobility block as shown below:

 Analysis ‣ Mobility

Set the MethodMethod to Full angular (k,q)-dependence

Set the Fermi shiftFermi shift to 0.13 eV

Untick Calculate Hall coefficients

 NoteNote

Note that we choose a
-line direction somewhat arbitrarily here. The point is that a low number of
-points can be used to generate an energy dependent rate. An alternative to a line could be to

coarsely sample the entire BZ to capture the anisotropy in
-space, but with fewer points than needed in the full (
,
)-dependent method.

In the main panel of the Script GeneratorScript Generator, set the Results fileResults file to Graphene_mu-line-full.hdf5 , send the
script to the Job managerJob manager,save it as Graphene_mu-line-full.py and click on the button to run the
calculation. You will again see a warning that the script might be invalid, and you should ignore it this time
as well.

τ(E)
μ

k
k

k
k
q

17/23

Once the calculation is done, you are ready to calculate the mobility using the isotropic scattering rate
method. In this case, you will re-use the bulk configuration and the full angular (

,
) -dependent mobility from the Graphene_relax.hdf5 and Graphene_mu-line-full.hdf5 files.

Go back to the Script generatorScript generator, and open the Custom ‣ Code Snippet block before the Mobility
icon . Change the contents to:

mobility_full = nlread('Graphene_mu-line-full.hdf5', Mobility)[0]

Then modify the Analysis ‣ Mobility block as follows:

 Analysis ‣ Mobility

Set the MethodMethod to Isotropic scattering rate

Set the Fermi shiftFermi shift to 0.13 eV

Untick Calculate Hall coefficients

Set the following values of the Energy RangeEnergy Range:

 = -0.24 eV

 = 0.24 eV

Points = 100

Set the k-point Samplingk-point Sampling to

In the main panel of the Script GeneratorScript Generator, set the Results fileResults file to Graphene_mu-line-iso.hdf5 . Send the
script to the EditorEditor, change mobility_object=None, to mobility_object=mobility_full, and remove this
line:

inverse_relaxation_time=numpy.linspace(0, 1e+12, 100)*Second**-1,

Send it to the Job managerJob manager, save it as Graphene_mu-line-iso.py and click on the button to run the
calculation. This should take no more than a minute on a modern laptop.

k
q

E0

E0

99 × 99 × 1

18/23

Once the calculation is done, open the file Graphene_mu-line-iso.hdf5 , select the MobilityMobility object

in the LabFloor and click on Text RepresentationText Representation.

 +--+
Mobility Report
Input parameters:
Temperature = 300.00 K
Fermi level shift = 0.13 eV
Energy broadening = 0.0030 eV
q-grid refinement = 1
+--+
Trace of linear responce tensors:
+--+
Electrons:
Mobility = 2.53e+05 cm^2/(V*s)
Conductivity = 1.73e+07 S/m
Seebeck coefficient = -3.00e-05 V/K
Thermal conductivity = 9.31e+01 W/(m*K)
Carrier density (2D, xy) = 8.55e+11 cm^-2
Holes:
Mobility = 1.89e+06 cm^2/(V*s)
Conductivity = 5.72e+04 S/m
Seebeck coefficient = 1.14e-03 V/K
Thermal conductivity = 5.74e+00 W/(m*K)
Carrier density (2D, xy) = 3.78e+08 cm^-2
 +--+

The calculated value for the electron mobility, highlighted in yellow above, is
, in good agreement with the value obtained by using the full (

,
) -dependent method.

Temperature dependence of the mobility: (k,q)-dependent method vs. energy-Temperature dependence of the mobility: (k,q)-dependent method vs. energy-
dependent methoddependent method

A more stringent test for the reliability of the energy-dependent method is to calculate the temperature
dependence of the mobility in an energy range up to room temperature.

In the (k,q)-dependent method(k,q)-dependent method, this can be done by simply modifying the value of the target
temperature in the Mobility analysis object.  temperature_dependence_full_mobility.py

In the energy-dependent methodenergy-dependent method, the two-step procedure must be repeated for each temperature, and
the target temperature has to be set both when calculating the values of the

- and
-dependent relaxation times

 along the line, and when calculating the energy-dependent relaxation times
.  temperature_dependence_isotropic_mobility.py

As it can be seen from the figure below, where the
-dependency of
 is calculated in the temperature range

, both methods reproduce well the expected

2.53 ⋅ 105 cm2V−1s−1

k
q

k
q
τ(k, q)
τ(E)

T
μ
100K ≤ T ≤ 300K

1/
19/23

 behavior of
. Script to create the plot:  plot_temperature_dependence_mobility.py

Convergence of q- and k-point samplingConvergence of q- and k-point sampling

In order to select the appropriate samplings in
- and
-space, we first studied the mobility as a function of the number of
-points, for a fixed sampling of
-points:

We see that the mobility is reasonably converged for 50
-points and above. This corresponds to a density of at least 200
. We then study the mobility as a function of

1/T
μ

k
q
q
k

q
Å
k

20/23

-points, and see that it converges very quickly in this case. We chose to use 20 k-points, corresponding
to a density of about 160

.

 WarningWarning

This convergence study is only valid for this combination of system and computational settings. You
should always study convergence for your system of interest and chosen computational model.

Theory sectionTheory section

The mobility
 is related to the conductivity
 via

(8)¶

where
 is the carrier density,
 is the electronic charge.

In this tutorial, you will calculate the conductivity using the semi-classical Boltzmann transport equation
(BTE). In the case of zero magnetic field and a time-independent electric fields in the steady state limit the
BTE simplifies to:

(9)¶

The right hand side (RHS), often called the collision integral, describes different sources of scattering and
dissipation that drives the system towards steady state. The left hand-side is approximated to linear order
in the electric field by changing to the equilibrium distribution.

The electron-phonon scattering is described by the collision integral. Most commonly this is

k

Å

μ
σ

μ = ,
σ

ne

n
e

⋅ ∇kfkn ≈ ⋅ ∇kf0
kn

=
∣
∣
∣
coll

qE
ℏ

qE
ℏ

∂fkn

∂t

21/23

approximated by a relaxation time:

describing quasielastic scattering on acoustic phonons (relaxation time approximation). We let
 label the phonon modes,
 the electronic bands,
 the electron momentum. The transition rate from a state

 to
 is obtained from Fermi’s golden rule (FGR):

where the first and last terms in the square brackets describes phonon absorption and emission,
respectively. The electron-phonon coupling matrix elements

 are in ATKATK calculated using the ElectronPhononCouplingElectronPhononCoupling analysis module.

The general electron-phonon collision integral is given by

(10)¶

Relaxation time approximationRelaxation time approximation

In the relaxation-time approximation (RTA) one assumes a special simplified form of the RHS/collision
integral:

(11)¶

where
. The linearized BTE becomes:

Hereby we find the solution:

The relaxation-time can be evaluated from the general collision integral, (10). However, the specific form
in eqn. (11) only applies in the limit of quasielastic scattering (

), in which case the collision integral, in eqn. (10), simplifies significantly:

since
 in this limit.

∣
∣
∣
coll

=
∂fkn

∂t

δfkn

τkn

λ
n
k
|kn⟩
|k′n′⟩

P λnn′

kk′ = |gλnn′

kk′ |2[nλ
qδ (ϵk′

n′ − ϵkn − ℏωqλ) δk′,k+q

+ (nλ
−q + 1)δ (ϵk′

n′ − ϵkn + ℏω−qλ) δk′,k−q],

2π

ℏ

|gλnn′

kk′ |

∣
∣
∣
coll

= −
∑
k′

n′ [fkn (1 − fk′
n′) P nn′

kk′ − fk′
n′ (1 − fkn) P n′n

k′k
]∂fkn

∂t

∣
∣
∣
coll

= −
∂fkn

∂t

δfkn

τkn

δfkn = fkn − f0
kn

qE ⋅ vkn = − .
∂f0

kn

∂ϵkn

δfkn

τkn

δfkn = −qE ⋅ vkn τkn.
∂f0

kn

∂ϵkn

ωqλ → 0

∣
∣
∣

RTA

coll

=
∑
k′

n′ (fk′
n′ − fkn) P nn′

kk′ ≡ − ,
∂fkn

∂t

δfkn

τkn

P nn′

kk′ = P n′n
k′k

22/23

Next 

We then obtain the expression for the scattering rate or inverse relaxation-time:

(12)¶

where we applied the detailed balance equation in this limit,
, and assumed isotropic scattering.

To evaluate the relaxation time we introduce the scattering angle

where
 is the electron velocity. Following [1] we obtain

MobilityMobility

Once knowing the relaxation times one obtain the mobility as:

(13)¶

where the factor 2 accounts for spin degeneracy.

ReferencesReferences

[1] (1,2)
T. Gunst, T. Markussen, K. Stokbro, and M. Brandbyge. First-principles method for electron-phonon
coupling and electron mobility: applications to two-dimensional materials. Phys. Rev. B, 93:035414, Jan
2016. doi:10.1103/PhysRevB.93.035414.

[2]
Kristen Kaasbjerg, Kristian S Thygesen, and Karsten W Jacobsen. Unraveling the acoustic electron-
phonon interaction in graphene. Physical Review B, 85(16):165440, 2012.

 Previous

© Copyright 2023 Synopsys, Inc. All Rights Reserved.

=
∑
k′

n′ (1 −) P nn′

kk′

1
τkn

δfk′
n′

δfkn

P nn′

kk′ (f0
k′

n′ − f0
kn

) = 0

cos(θkk′) =
vk′

n′ ⋅ vkn

|vk′
n′||vkn|

vkn

==
∑
k′

n′ (1 − cos(θkk′)) P nn′

kk′

1
τkn

(1 − f0
k′

n′)

(1 − f0
kn

)

μ = −2q
∑kn v2

kn
τkn

∂f0
kn

∂ϵkn

∑kn f0
kn

23/23

	Table of Contents
	Phonon-limited mobility in graphene using the Boltzmann transport equation
	Geometry and electronic structure of graphene
	Phonons in Graphene
	Mobility of graphene
	1. Hamiltonian derivatives
	2A. Electron-Phonon couplings: (k,q)-dependent method
	3A. Mobility: (k,q)-dependent method
	2B. Electron-Phonon couplings: energy-dependent method
	3B. Electron mobility: energy-dependent method
	Temperature dependence of the mobility: (k,q)-dependent method vs. energy-dependent method

	Convergence of q- and k-point sampling
	Theory section
	Relaxation time approximation
	Mobility

	References

