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Abstract

This document explains the formalism used for computing noncollinear spins and spin torque in the device structures
by ATK.

NONCOLLINEAR SPINS

Systems with noncollinear spins are quite ubiquitous and refer to situations where the spin direction depends on
position in such a way that there is no particular direction in which all the spins are (anti)parallel. This includes
systems with spin spirals (e.g. chromium) and helicoids, canted spins (e.g. manganites), and most commonly domain
walls in ferromagnetic materials. ATK allows you to study systems with noncollinear spins from first principles.

Unlike in a simple case of collinear spins (ferromagnetic (FM) or anti-ferromagnetic (AFM) ordering of moments
in a crystal) the Kohn-Sham (KS) equations for different spin directions marked by Greek letters α, β =↑, ↓ do not
decouple in a noncollinear system. The situation is simplified if one introduces the exchange-correlation field that
plays a role of an internal magnetic field, Bex, given by the following variational derivative of the total exchange and
correlation energy Exc with respect to the magnetization density m(r):

Bxc(r) = δExc[n,m]/δm(r),

where m(r) = n↑ (r)− n↓(r) is the local spin density, n↑,↓(r) the electron density for spin up/down electrons with
respect to a local quantization axis that coincides with the direction of Bxc in the local spin density approximation
(LSDA), where

Bxc(r) = −e(r) n(r)∂[εxc(n,m)]/∂m

≡ ∆ e(r), (1)

where e(r) = m(r)/m(r) is the unit vector in the direction of the local moment, εxc(n,m) the exchange-correlation
energy density, and we have introduced the exchange splitting energy per unit moment ∆, frequently used in quan-
tum theories of magnetic materials. This collinearity, Bxc(r) ‖ m(r), does not hold in the generalized gradient
approximation (GGA) [1]. Then, the KS equations read [1]

Hψi(r) = εiψi(r),

H = T + V ei(r) + V H(r) + V xc(r)−Bxc(r) · σ

where H is the standard Hamiltonian of a one-electron DFT problem, V xc = δExc[n,m]/δn(r), which is simply
∂[nεxc(n,m)]/∂n in the LSDA,

ψi(r) =

(
αi(r)

βi(r)

)
,

is the two-component spinor electron wavefunction. We will use the index s to denote the spin components of the
wavefunction, index i = RLλ with L = (l,m) denoting the orbital λ on site R with angular moment l and azimuthal
quantum number m. Finally, σ = (σx, σy, σz) is the vector composed of three Pauli matrices.

One can define the noncollinear density matrix in a “spin space” given by

n(r) =

occ∑
i

ψ†iα(r)ψiβ(r) =

(
nαα nαβ
nβα nββ

)
from which we can obtain the polarization vector

ma(r) =

occ∑
i

ψ†iα(r)σaαβψiβ(r),



2

with Roman letters marking Cartesian components, a = x, y, z, with summation over repeated indices, as

mx = 2 Renαβ , (2)

my = −2 Imnαβ ,

mz = nαα − nββ . (no summation)

The direction of the polarization vector m defines a local spin quantization axis and the corresponding rotation
matrix U which diagonalizes n through the unitary transformation

ndiag = UnU†,

which transforms the density matrix into the diagonal form

ndiag =

(
n↑ 0
0 n↓

)
.

The rotation matrix is defined in terms of standard spherical coordinates (θ, φ) of the polarization vector m with
(mx,my,mz) components in a laboratory frame [5, 6],

U =

(
ei

φ
2 cos θ2 e−i

φ
2 sin θ

2

−ei
φ
2 sin θ

2 e−i
φ
2 cos θ2

)
.

To rotate from the diagonal back to the non-diagonal form, one applies the inverse operation

n = U†ndiagU.

SPIN TRANSFER TORQUE

Spin transfer torque (STT) refers to a situation when a current of spin-polarized carriers from one part of a system
with a particular polarization given by the unit vector eRL (a “reference layer”, RL] with the polarization enters e.g. a
“free layer” (FL) with magnetization given by the vector e, with |eRL · e| < 1, and exerts the torque on the magnetic
moment in the FL [2, 3]; for a review, see Ref. [4, 5]. The polarized current with density J brings J/q electrons into
the FL per second per unit area, each carrier on average bringing ηh̄/2 angular momentum with them, where q is
the elementary charge, and η = (J↑ − J↓)/J is the average polarization. As a result, gη (h̄/2) J/q is the net flow of
magnetization into a unit area of the FL, where g is the gyromagnetic ratio. Its ratio to the moment per unit area of
the FL with saturated magnetization MS and thickness t (that is, MSt), gives the torque per unit area,

T STT = T‖ = −A e× e× eRL, (3)

A = gη
h̄J

2q

1

MSt
. (4)

This is the so-called in-plane component of a total torque, T ‖, while there is also a field-like perpendicular component
T⊥ ∝ e× eRL.

One can use the definition of the torque as a rate of change of a spin moment under the effect of local exchange field

at a general angle to a local spin moment direction (not at mutual angle ̂σ,Bxc = 0, π, i.e. at general noncollinear
mutual orientation):

T̂ a = − i
h̄

[
h̄

2
σa,H

]
=
i

2
Bbxc

[
σa, σb

]
=
i

2
Bbxc2iεabcσ

c = (σ ×Bxc)
a
, (5)

where a = x, y, z, and εabc is the fully antisymmetric tensor. To get the expectation average of the torque, one needs
to average the torque operator, Eq. (5), with the density matrix of the system ρ and sum it up over the all final states
(in the right electrode; we presume for clarity sake that the electrons are flowing from the left electrode, which is the
reference layer, into the right free layer electrode through the free layer):

T = Tr (ρ σ ×Bxc) = Tr (δρ σ ×Bxc) . (6)
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It is worth noting that in the small current regime, the contribution to the torque is given only by the non-equilibrium
part of the density matrix, δρ = ρ − ρeq ∝ J . Summation over both spins will add the polarization factor η, so in
the linear regime the exact expression (6) yields the same functional form as the phenomenological (3). Since in the
latter all parameters are pretty well defined or can be found from ab-initio simulations, it would be interesting to
compare phenomenological and exact (DFT) values of the coefficient A. Technical details of the formalism are given
in the Appendix.

In ATK, the torque can be calculated in the real space representation through the equilibrium effective internal

field B
(eq)
R,xc and the non-equilibrium part of the local magnetization mR. The Cartesian components are found from

Bxeq = 2 ReV xcαβ

Byeq = −2 ImV xcαβ

Bzeq = V xcαα − V xcββ

If we assume that the current direction is along the z−axis, and the moment in the free layer e||x, then the two
components of the torque are

T|| =
√
T 2
x + T 2

z ,

T⊥ = Ty.

In the linear response regime the non-equilibrium density is obtained through

δρ = ρL(EF )qU, (7)

where ρL is the left (RL) local density of states and U the applied bias; see Eq. (15) below. From Eq. (2) we obtain
mneq. This corresponds to an injected spin momentum that is absorbed in the free layer [7], see Fig. 1.

ATK provides an interface to calculate V xc (ExchangeCorrelationPotential) and ρL

(LocalDeviceDensityOfStates) in equilibrium, and from that ATK evaluates the torque Eq. (6). At finite
bias ATK may calculate nneq by evaluating ρL at a number of energies and integrating them over the window of
energies available for transport, i.e. (EF − qU/2, EF + qU/2).

A simple spin scattering picture of spin current and its “absorption” by the free layer is given in Ref. [5] along
with a discussion of memory devices. A few general analytical results for spin torque in DFT have been presented
in Ref. [9]. Recently, a spin torque stack like FeCoB/MgO/FeCoB became very popular because of a large resistance
change as a result of spin moment change in the free layer, subject to a flowing polarized current, non-volatility, and
a good potential for scaling of the normally used vertical stack, see Fig. 1. The corresponding physics and actual spin
transfer torque magnetic random access memory (STT MRAM) technology is discussed on a basic physics level in
various recent papers (see Ref. [10] and references therein). A more memory technology oriented review can be found
in Ref. [11].

APPENDIX

The torque on a free layer is given by

T = Tr
[
δρ T̂

]
, (8)

with T̂ from (5), where ρ is the actual density matrix calculated by ATK for a device system;

δρ = ρ− ρeq = ρ+
1

π

∫ ∞
−∞

dEfR(E) ImGr
0(E), (9)

where

Gr0(E) = [E −H− ΣL(E)− ΣR(E)]
−1
. (10)

is the retarded Green function (GF) at zero bias voltage (U = 0) [12] with ΣL(R) denoting the left (right) self-energy
operator [12]. In noncollinear LSDA

Tr
[
ρeqT̂

]
≡ 0, (11)
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FIG. 1: Schematic of FM(RL)-I-FM(FL)-M device with FM(RL) the ferromagnetic reference layer with a fixed direction of
magnetic moment m′, I the insulator, FL the ferromagnetic “free” layer with freely rotating magnetic moment m, and N the
nonmagnetic metal electrode. The spin-polarized current runs in ez−direction. When the general case of misaligned moments
m and m′ there is a torque exerted on the moment in the free layer by electron spins incident from the reference layer (RL).
Quite naturally, the magnitude of the torque depends on the density of a spin-polarized electron states at the interface between
the right-most atomic layer in the insulator (marked as −1) and the first atomic layer in the free layer (marked as 0).

so in that approximaton T = Tr
[
ρT̂
]
. From (12) and (9) we obtain

T = Tr

[
− 1

π

∫
dE fR(E)ImGr(E) T̂

]
+Tr

[
1

2π

∫
dE Gr(E)ΓL(E)Ga(E) [fL(E)− fR(E)] T̂

]
, (12)

where f(L)R(E) = f [E − (+)qU/2] is the Fermi functions for the left (right) electrode at bias U , ΓL(E − qU/2) is the
coupling operator for the left electrode, and

Gr(E) = [E −H− ΣL(E − qU/2)− ΣR(E + qU/2)]
−1
,

is the retarded GF at finite bias. The advanced GF is Ga(E) = [Gr]
†
. ATK has routines calculating both integrands

in (12) and evaluating the integrals over energy.
The above general expression for a torque (which can be applied by analogy to evaluating an expectation value of

any one-particle electron operator) is strongly simplified in a small bias regime U → 0 (in practice, qU should be
much less then the energy fine structure in the density of states or density matrix). In this case, the first term in (12)
vanishes because of (11) and we get, to linear order in U ,

T = Tr

[
qU

2π

∫
dEGr0(E)ΓL(E)Ga0(E) [−∂f(E)/∂E] T̂

]
, (13)

which at zero temperature reduces to quantities on the Fermi surface :

T = Tr
[
qU ρL T̂

]
, (14)

ρL = Gr0(E)ΓL(E)Ga0(E). (15)

at E = EF . This defines the quantities mentioned in the main text above.

We can use continuum-like theory to get an idea about layer-resolved spin torque:

∂Sa
∂t

= ∇bJab +
Sa − Seq

a

τsf
+ Ta,
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where Jab = vaSb the tensor of spin flux, with vα the Cartesian component of electron velocity at the Fermi surface,
Sa the spin density, with Seq

a its equilibrium value, and τsf the spin-flip time, and finally Ta the vector of spin torque,
a, b = x, y, z with summation implied over the repeating indices. In an atomistic model, all characteristics are the
functions of the component of wave vector parallel to an interface, k‖. In a stationary case with ∂/∂t = 0 and the spin
flip length much larger than the thickness of the scattering free layer, vF τsf � t, the torque is simply the divergence
of the spin flux tensor:

Ta = −∇bJab,

and we can define a torque on a particular (n-th) layer as

T n = −∇ · I = In−1,n − In,n+1.

so the torque on a thick enough layer would be [7]

T =

∞∑
n=0

In−1,n − In,n+1 = I−1,0 − I∞,∞ = I−1,0. (16)

Here, the superscripts -1 and 0 refer to the last monolayer of the I barrier and the first layer in the F barrier,
respectively, Fig. 1. This layer representaion would be helpful in atomistic studies of spin dynamics induced by a flow
of spin-polarized current.
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