
1
2
2
4
6

Table of Contents

Table of Contents
POV-Ray images from QuantumATK

Elementary functionalities through an example
Examining the .pov file
Exporting pictures with POV-Ray

1/9

Downloads & LinksDownloads & Links

 PDF version
 picture.pov
POV-Ray
 Gallery

Docs » Tutorials » Miscellaneous » POV-Ray images from QuantumATK

POV-Ray images from QuantumATKPOV-Ray images from QuantumATK

POV-Ray (Persistence of Vision Raytracer) is a cross-platform ray-tracing program (written in C++) which
generates images. This application is already included in QuantumATK platform and gives one more
option for editing of the extracted images. This combination of QuantumATK and POV-Ray extends the
capabilities of the former to a more artistic perspective

Elementary functionalities through an exampleElementary functionalities through an example

In this simple example (diatomic molecule) we are going to present how to edit an image of a molecule
composed by two atoms (red and white). Also, it is a good opportunity to introduce some basic POV-Ray
concepts we are going to use. The whole process is shown schematically below:

 QuantumATKQuantumATK

 Try it!

 QuantumATK

 Contact

2/9

Step 1: Create a structure in QuantumATK.Step 1: Create a structure in QuantumATK. The first step is to create this structure using the
QuantumATK Builder. At this point it is good to analyze what our structure has. Here in this example
we have two atoms represented by two spheres (white and red colors) connected with a single bond
that represented by a thin cylindrical object. This object is composed by two cylinders (white and red
cylindrical surfaces) and their top and bottom caps (white and red discs). Namely,

Structure Composition:

1. sphere (red atom)
2. sphere (white atom)
3. cylinder (red atom bond-part)
4. cylinder (white atom bond-part)
5. disc (red bottom cap of the red atom bond-part)
6. disc (white top cap of the red atom bond-part)
7. disc (red bottom cap of the white atom bond-part)
8. disc (white top cap of the white atom bond-part)

Step 2: Extracting POV-Ray files.Step 2: Extracting POV-Ray files. Once we are ready with the molecule in QuantumATK we are ready to

3/9

extract it as a POV-Ray file (POV-Ray files have the .pov.pov extension). It is quite easy to do that; just click
the POV-Ray icon at the top-right of the Builder’s toolbar. A pop-up window appears asking you to
give a name to the .pov file. Let’s name it as picture.povpicture.pov. Clicking the Generate button we extract our
diatomic molecule in a POV-Ray file and our rendering in picture.png format.

 AttentionAttention

It is important to mention here that the extracted .pov files (from QuantumATK) cannot be modified
with QuantumATK. We can do that only with the POV-Ray program changing and importing
parameters and properties.

Examining the .pov fileExamining the .pov file

Header Files.Header Files. Opening the picture.pov file we see a C++ code that describes each element and every
detail of our picture. In the first lines of the code we include some .inc header files that are responsible
for handling various colors, textures and shapes. Their role is obvious and it is not necessary to get
into more details about that now:

1 #include "colors.inc"
2 #include "stones.inc"
3 #include "textures.inc"
4 #include "shapes.inc"
5 #include "metals.inc"
6 #include "woods.inc"

Camera(s).Camera(s). The next few lines describe the properties of the camera. The camera element is very
important because the rendering of the picture is depending on it.

1 camera {
2 orthographic
3 location <0,0, 0>
4 direction <0,0,-1>
5 right <2.7, 0, 0>
6 up <0, 2.4, 0>
7 }

The above lines of code describe the camera view that we have used to extract our diatomic
molecule from QuantumATK. The following picture shows some basic camera properties in the 3D
space. For more information on editing cameras and their properties look at POV-Ray cameras.

4/9

Light Source(s).Light Source(s). The next important element is the light_source element. One may control this element
by importing and/or changing various light source attributes. In the present example we have two light
sources where their locations and their color lights have defined:

1 light_source { < 0, 0, 0> color White }
2 light_source { < -200.0, 200.0, 243.0> color White shadowless}

Background(s).Background(s). This element is used to assign a color to all rays that do not hit any object. Here we
have defined a grey background providing the proper RGB color coordinates:

1 background { color rgb <0.15, 0.15, 0.15> }

QuantumATK Object(s).QuantumATK Object(s). The next part of the code includes the description of the various objects that
we have created and rendered in QuantumATK. Namely, the elements and their properties (like
textures, colors, relevant positions, radii, etc.) that are mentioned in step 1 above. It is easy to see in
these code lines that we have indeed: two spheres, two cylinders and four discs and their properties
are defined between the curly brackets. For example, the red atom/sphere is described by the
following sphere:

 1 sphere {
 2 <-0.3, 0.2, -2.1>, 0.4 // center and radius
 3 texture {
 4 pigment { color rgb <1. 0.06 0.06> }
 5 finish {
 6 ambient .2
 7 diffuse .4
 8 specular .75
 9 roughness .001
10 reflection { .6, metallic}
11 }
12 }
13 }

In line 2 we can see the location (in Cartesian <x,y,z> coordinates) of the center of the sphere. The
next number after the comma is just the radius of the sphere. The rest lines describe the texture of
the sphere. In pigmentpigment we can clearly see the color definition (red) while with the finish identifier

5/9

(staring in line 7) we have a more realistic impression of the object. FinishFinish is quite useful identifier
since it gives us the option to control many properties (like roughness, diffusion and reflection
effects, and many more) of the surface(s) of an object in a more detailed level. The final result of
all these texture-terms are highly correlated with the light sources and the camera view of course.
This means that when we change a parameter in finishfinish identifier we must always take into account
the light properties that we have already set in our scenery according to our camera view (different
camera views give us different impressions of the same object since the light reflections are
changing). Cylinders and discs are defined in a similar way.

Step 4: Editing POV-Ray Files.Step 4: Editing POV-Ray Files. Now we are ready to update our picture. Editing the example1.pov file
we are able to control many parameters, to add objects and to create many artistic effects in general
(using the POV-Ray program). In our example we just add a plane. The plane we want to have is
described by the following lines of code:

1 plane {
2 <0,0,1>, 1 //This represents the plane 0x+0y+z=1
3 texture { T_Silver_3A } //The texture comes from the file "metals.inc"
4 }

Exporting pictures with POV-RayExporting pictures with POV-Ray

 NoteNote

The content of this paragraph refers to the general use of POV-Ray as an independent program and
does not restricted by QuantumATK or any other software. QuantumATK just has the ability to export
complex structures as .pov and .png extensions.

In order to be able to export an edited picture you must have already installed POV-Ray on your system.
You can find detailed instructions about this topic at the POV-Ray's download page. So, assuming that
you have already a [filename].pov file (in our example here [filename] stands for “picture”) follow the steps
below:

 | POV-Ray on WindowsPOV-Ray on Windows

6/9

Step 5.1:Step 5.1: Click the POV-Ray application icon and the POV-Ray interface opens (see picture above).

Step 5.2:Step 5.2: Click OpenOpen button, and navigate to your files to import your [filename].pov file you prefer
(picture.pov for instance). Now you can see and edit the code according to your preferences. Once
you are ready just click the green RunRun button and in some seconds you will create your
[filename].png picture.

 | POV-Ray on LinuxPOV-Ray on Linux

Step 6.1:Step 6.1: Open the [filename].pov with a text editor, make the changes you want (if any) and save it.

Step 6.2:Step 6.2: Open a terminal and type povray [path/to/pov/file] . For example if the picture.pov file is
on the Desktop, then type:

1 $ cd Desktop/
2 $ povray Desktop/picture.pov

or directly

1 $ povray Desktop/picture.pov

If you want specific picture size type:

1 $ cd Desktop/
2 $ povray picture.pov -w320 -h240 +a0.3

Where -w-w, -h-h, +a+a numbers define the widthwidth, the heightheight and the aspect ratioaspect ratio respectivelly.

7/9

Next  Previous

8/9

© Copyright 2023 Synopsys, Inc. All Rights Reserved.

9/9

	Table of Contents
	POV-Ray images from QuantumATK
	Elementary functionalities through an example
	Examining the .pov file
	Exporting pictures with POV-Ray

