
1
2
2
3

Table of Contents

Table of Contents
Performance troubleshooting guide

Running out of memory?
Want to make it run faster?



Downloads & LinksDownloads & Links

 PDF version 
ATK Reference Manual 

Docs  » Technical Notes  » Performance troubleshooting guide

Performance troubleshooting guidePerformance troubleshooting guide

In this tutorial, you will learn which are the main parameters to tune for improvimg ATKATK performance for
various systems. In order to get the highest possible performance of your calculations, ATKATK provides an
array of different algorithms and utilizes both MPI and shared-memory threading for parallelization. As
already mentioned in the technical note Parallelization of QuantumATK calculations, MPI parallelization
will ususlly give the best speedup of calculations, while threading of processes can often reduce the
memory footprint.

Getting the absolute peak performance out of any high performance software requires somewhat deep
knowledge of both the calculation in question, and the hardware used. It is therefore important to
optimize your QuantumATK simulation with respect to hardware used and parallelization method.
However, the following sections give some tips for QuantumATK algorithms and options that may also
help in fixing issues with memory or speed.

Running out of memory?Running out of memory?

General indicationsGeneral indications

Try to disable store_gridsstore_grids in AlgorithmParametersAlgorithmParameters, this will lower the memory slightly, and will reduce
the calculation time very little.
Disabling store_basis_on_gridstore_basis_on_grid in AlgorithmParametersAlgorithmParameters will reduce the memory significant, and if the
matrix size of the system is small, it can have negative effect on the performance. This parameter is by
default turned off, if the configuration is large, so it might already be disabled. If running in parallelparallel, the
memory reduction will be lower per core, since the memory is distributed.

If running in parallelparallel with more than two processers, try setting the algorithmalgorithm in
IterationControlParametersIterationControlParameters to ParallelPulayMixerParallelPulayMixer.

Specific for molecules and bulk configurationsSpecific for molecules and bulk configurations

If the matrix size is very large, consider setting density_matrix_methoddensity_matrix_method in AlgorithmParametersAlgorithmParameters to
DiagonalizationSolver(processes_per_kpoint=2)DiagonalizationSolver(processes_per_kpoint=2). This will reduce the memory usage per mpi-process
by a factor of 2. Try to increase processes_per_kpointprocesses_per_kpoint, if the problem persist.
If the calculation is very large, and the calculation is run in parallelparallel over many nodes, it can be worth
trying setting density_matrix_methoddensity_matrix_method in AlgorithmParametersAlgorithmParameters to ChebyshevExpansionSolverChebyshevExpansionSolver. When

 QuantumATKQuantumATK

  Try it!

  QuantumATK

  Contact



run in massive parallel, this will reduced the memory usage dramatically, however it is also slow
compared to ordinary routines.

Specific for device configurationsSpecific for device configurations

Try setting storage_strategystorage_strategy in SelfEnergyCalculatorSelfEnergyCalculator to StoreOnDiskStoreOnDisk or NoStorageNoStorage. This will reduce the
memory significantly, but will also cost performance for the latter. If running in parallelparallel, the memory
reduction will be lower per core, since the memory is distributed.
The device has a wide cross section, try setting equilibrium_methodequilibrium_method and/or non_equilibrium_methodnon_equilibrium_method
to SparseGreensFunctionSparseGreensFunction
If run in parallelparallel, setting equilibrium_methodequilibrium_method and/or non_equilibrium_methodnon_equilibrium_method to
SparseGreensFunction(processes_per_contour_point=2)SparseGreensFunction(processes_per_contour_point=2) will help. If the problem persist, try setting
processes_per_contour_point=4processes_per_contour_point=4.

Want to make it run faster?Want to make it run faster?

General indicationsGeneral indications

If the calculation requires the usage of the multigrid method, as in the presence of gates, it is possible
to consider DirectSolverDirectSolver for the possion_solverpossion_solver. It will require significant more memory, but the
overhead is memory distributed so if running in parallelparallel it can be worth to try it.
Set store_basis_on_gridstore_basis_on_grid in AlgorithmParametersAlgorithmParameters to True. This will make the calculation run faster - and
have moderate, but distributed memory overhead.

Specific for molecules and bulk configurationsSpecific for molecules and bulk configurations

In ATK 2015ATK 2015 two new parameters have been introduced for density_matrix_methoddensity_matrix_method in
AlgorithmParametersAlgorithmParameters: processes_per_kpointprocesses_per_kpoint and bands_above_fermi_levelbands_above_fermi_level.

1
2
3
4
5
6

algorithm_parameters = AlgorithmParameters(
    density_matrix_method=DiagonalizationSolver(
                                                bands_above_fermi_level=20,
                                                processes_per_kpoint=2
                                                ),
    )

With processes_per_kpointprocesses_per_kpoint you can specify the number of mpi-processes to use per k-point allowing
you for an extra level of parallelization.

The next figures shows the time for a full SCF run for a InGaAs bulk configuration using 32 k-points. By
default, you will be able to parallelized at most over 32 mpi-processes (red line). A quick way to check how
many k-points are used in the calculation you can run the following script:

1
2
3

mk = MonkhorstPackGrid(4,4,4)
irriducible_kpoints = mk.kpoints()
print(len(irreducible_kpoints), ' irreducible kpoints')

By specifying processes_per_kpointprocesses_per_kpoint you are now able to push your parallelizatio even further (blue line).



Next 

Fig. 233 Benchmark plot for InGaAs alloy run on Xeon E5-2687W @ 3.1GHz 16 cure/node cluster. Timing corresponds to a full

SCF cycle (converged in 19 steps).

The total number of bands used in the calculation is defined by the size of the basis set. By defaults all
empty bands are included. However, including all these bands in the calculation does not improve the
accuracy while it will slow down considerably you simulations. Set bands_above_fermi_levelbands_above_fermi_level to specify
the number of empty bands to be used. In the example above, you can see that using all bands (green
point) will double the computational time.

 NoteNote

The optimal number of empty bands to be used depends on several factor, including the electron
temperature specified in the LCAO calculator.
The performance improvement increase with the system size. For small systems, < 100 atoms, you
can keep the default parameter.

Specific for device configurationsSpecific for device configurations

There are indeed many parameters that you can tune in order to get the optimal performance for a device
configuration. Which are the parameters to tune? This really depends on the system you are investigating
and the methods you are using.

 Previous

© Copyright 2022 Synopsys, Inc. All Rights Reserved.


	Table of Contents
	Performance troubleshooting guide
	Running out of memory?
	Want to make it run faster?


