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In this tutorial you will learn how to use the MagneticAnisotropyEnergy study object to calculate the
magneto-crystalline anisotropy (MCA) energy of bulk FePt in the

 phase.

The result of the MagneticAnisotropyEnergy will be compared with self-consistent total energy
calculations including spin-orbit coupling, and you will learn about the most important numerical
parameters to converge, when performing MCA calculations.

ContentsContents

Bulk Magnetic Anisotropy Energy

Introduction

Theory

MAE of FePt

TotalEnergy calculations

Convergence of results

COSMICS project

IntroductionIntroduction

 QuantumATKQuantumATK

  Try it!

  QuantumATK

  Contact

L10

2/16



The magnetic anisotropy energy (MAE) is the energy difference between two magnetization directions.
Different physical mechanisms can contribute to the MAE, but here we are concerned with the
magnetocrystalline anisotropy (MCA). Another important contribution is the shape-anisotropy, which
occurs if the magnetic material has a non-spherical shape.

The origin of the MCA is the spin-orbit coupling and it is characterized by the dependence of the energy of
a magnetic system on the orientation of the magnetization with respect to the crystallographic structure
of the material. The axis (or plane) corresponding to the minimum of energy is the so-called easy axis
(plane).

The MAE is of central interest for both fundamental and practical reasons, with STT-MRAM being one of
the most important technological examples.

STT-MRAMSTT-MRAM

Spin-transfer torque magnetic random access memory (STT-MRAM) enables higher densities, low power
consumption and reduced cost compared to regular MRAM devices. The main advantage of STT-MRAM
over regular MRAM is the ability to scale the STT-MRAM chips to achieve higher densities at a lower cost.

One of the key requirements of an STT-MRAM device is of course to be able to store information. This
requires that the energy-barrier between the ‘1’ and ‘0’ states is large enough to not allow switching due to
thermal fluctuations. The MCA is a key element in determining the energy barrier and thus the thermal
stability of a STT-MRAM memory unit.

TheoryTheory

The magnetic anisotropy energy is defined as the energy difference between two spin orientations:

where the spin orientation is described by the two spherical angles
 and
. The MAE can be calculated directly from self-consistent calculations including spin-orbit coupling. This

can, however, be computationally quite demanding since spin-orbit calculations can some-times be
difficult to converge at the desired accuracy.

Force theoremForce theorem

In the MagneticAnisotropyEnergy study object we calculate the MAE using the force theorem, which
allows you to evaluate the energy difference using non-self consistent band energies [1]:

where
 is the occupation factor for band i (including both band and k-point index) with the spin

orientation
 and

 is the corresponding band energy.

The use of the force theorem (FT) has been validated in several papers, e.g. [2], [3] against self-consistent
calculations of total energies. Using the FT has several advantages over the self-consistent approach:

It is usually faster since the self-consistent solution of the spin-orbit calculation is computationally
significantly more demanding than the polarized one.

Often it is harder to achieve good convergence for a spin-orbit calculation than for a polarized one.

Using the FT approach allows for projection analysis since each band energy has an associated
eigenvector that can be projected onto atomic sites or individual orbitals (see the :ref:
´mae_bulk_analyze_results´ section). The projection analysis is often helpful in understanding the

MAE = E(θ1, ϕ1) − E(θ0, ϕ0),

θ
ϕ

MAE =
∑

i fi(θ1, ϕ1)ϵi(θ1, ϕ1) −
∑

i fi(θ0, ϕ0)ϵi(θ0, ϕ0),

fi(θ, ϕ)

(θ, ϕ)
ϵi(θ, ϕ)
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physics behind the calculated MAE. An example could be the difference between surface/interface

atoms and bulk atoms in the contribution to the MAE in a metallic slab [4].

 NoteNote

About the naming: In this tutorial, the name magnetic anisotropy energy (MAE) will be used somewhat
interchangeably with the name magnetocrystalline anisotropy (MCA). A third name, which is often
used, is perpendicular magnetic anisotropy (PMA) and refers to an interface plane, often with a
magnetic tunnel junction in mind - see also Magnetic Anisotropy Energy of Fe-MgO-Fe MTJ structure.
In the literature, the MAE will sometimes include the so-called shape anisotropy as well, which

accounts for the (classical) dipole-dipole interaction between magnetic moments [1].

MAE of FePtMAE of FePt

 FePt has been studied in a number of scientific papers and is one of the materials with the largest
known MCA. In this tutorial we will use the structure from [3]. It is well-known that even small structural
difference can have a big impact on the MCA. In order to have a direct comparison to the calculated
values in [3] we will not perform any structural relaxation.

StructureStructure

The structure of the FePt cell is shown below.

# -------------------------------------------------------------
# Bulk Configuration
# -------------------------------------------------------------

# Set up lattice
lattice = SimpleTetragonal(2.722*Angstrom, 3.71281*Angstrom)

# Define elements
elements = [Platinum, Iron]

# Define coordinates
fractional_coordinates = [[ 0.5,  0.5,  0.5],
                          [ 0. ,  0. ,  0. ]]

# Set up configuration
bulk_configuration = BulkConfiguration(
    bravais_lattice=lattice,
    elements=elements,
    fractional_coordinates=fractional_coordinates
    )

Copy the python script with the bulk configuration and paste it into the  BuilderBuilder:

1. Press the  AddAdd icon
2. Select From ClipboardFrom Clipboard
3. Press F2  and rename the structure to FePt.

The structure should look like this:

L10
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Send the structure to the Script GeneratorScript Generator using the  icon.

Setup MagneticAnisotropyEnergy calculationSetup MagneticAnisotropyEnergy calculation

MCA values are small quantities, most often below 1 meV/atom. This puts strong requirements on the
numerical settings and a careful convergence study is recommended for any use of
MagneticAnisotropyEnergy.

In the Convergence of results section we will go into more details about convergence studies. For now we
will setup a calculator with reasonably well-converged settings resulting in calculated MCA values
converged within

 meV.

In the  Script GeneratorScript Generator add an  LCAOCalculatorLCAOCalculator. Open the calculator block and apply the following
changes (see image below):

Change the SpinSpin to Noncollinear Spin-Orbit

Change the BroadeningBroadening to 300 K

Finally increase the k-point densityk-point density to 7 Å (select from the Preset DensitiesPreset Densities combo box)

∼ 0.2
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Close the calculator widget and add a  MagneticAnisotropyEnergyMagneticAnisotropyEnergy block, located under the  StudyStudy
objectobject category. Open the MagneticAnisotropyEnergyMagneticAnisotropyEnergy block to change the settings (see image below):

Increase the number of Theta angle pointsTheta angle points to 7.

If you are only interested in the energy difference between the out-of plane,
, and in-plane,

, configurations it suffice to just have two Theta angle points. For tutorial purposes we add more
angles to inspect the behavior of

.

Increase the k-point densityk-point density to 17 Å (select from the Preset densitiesPreset densities combo box)

Leave the ProjectionsProjections to Sites, but notice that you can also project on Sites and Shells or Sites and
Orbitals. These options can be useful for analysis of the MAE at e.g. interfaces, and will be addressed
in a different tutorial.

θ = 0
θ = 90

MAE(θ)
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Close the MagneticAnisotropyEnergyMagneticAnisotropyEnergy widget. You are now ready to submit the calculations. Note that due
to the rather high k-point sampling in both the LCAOCalculatorLCAOCalculator and in the MagneticAnisotropyEnergyMagneticAnisotropyEnergy
object, the calculation is somewhat computationally demanding and should preferably be run with several
MPI processes.

Send the calculation to the Job ManagerJob Manager using the  icon and run the calculation. The calculation can
take up to several hours, depending on the available computational resources. On a single node with 24
cores, it takes around 10 minutes with QuantumATK R-2020.09-SP1.

 NoteNote

A MagneticAnisotropyEnergyMagneticAnisotropyEnergy object can only be calculated when the calculator has SpinSpin set to
Noncollinear Spin-Orbit.

Analyze resultsAnalyze results

Once the calculation is done, we can inspect the result by either using Text RepresentationText Representation or the
dedicated MAE AnalyzerMAE Analyzer:

Find the Text RepresentationText Representation button in the right-hand panel. This will show a summary of the
calculations as shown here:
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# Title: FePt.hdf5 - magnetic_anisotropy_energy
# Type:  MagneticAnisotropyEnergy
+------------------------------------------------------------------------------+
| MagneticAnisotropyEnergy Report                                              |
+------------------------------------------------------------------------------+
+------------------------------------------------------------------------------+
| Calculated angles (Degrees)                                                  |
+------------------------------------------------------------------------------+
| (theta, phi) = (   0.00,    0.00)                                            |
| (theta, phi) = (  15.00,    0.00)                                            |
| (theta, phi) = (  30.00,    0.00)                                            |
| (theta, phi) = (  45.00,    0.00)                                            |
| (theta, phi) = (  60.00,    0.00)                                            |
| (theta, phi) = (  75.00,    0.00)                                            |
| (theta, phi) = (  90.00,    0.00)                                            |
|                                                                              |
+------------------------------------------------------------------------------+
| Total magnetic anisotropy energy (MAE)                                       |
+------------------------------------------------------------------------------+
| MAE = E(theta_1,   phi_1) - E(theta_0,   phi_0)                              |
| MAE = E(  90.00,    0.00) - E(   0.00,    0.00)                              |
| MAE =  2.3823 meV                                                            |
+------------------------------------------------------------------------------+

The bottom of the output shows the final MAE calculated as the energy difference between the first and
last angles. The positive MAE value means that the

 spin direction has a a lower energy than the
 direction.

The calculated MCA values of 2.3 meV is slightly smaller than the values reported in [3] ranging from 2.59
meV for self-consistent total energies calculated with VASP to 2.93 meV calculated with Siesta. As will be
shown in Convergence of results, the results ontained so far are not completely converged with respect to
k-point sampling. Using higher k-point sampling, the QuantumATK values are 2.5 meV and are thus in very
close agreement with the self-consistent results of VASP.

The result of a MagneticAnisotropyEnergy calculation can also be analyzed with the Magnetic
Anisotropy Energy analyzer. Mark the calculated MagneticAnisotropyEnergy on the LabFloorLabFloor and open
the analyzer.

The analyzer shows the contribution to the MAE from different projections, in this case for each atom. It
shows the Fe and Pt atoms contribute more or less equally to the total MAE.

The calculated angles can be selected in the AnglesAngles combo boxes. Selecting
 and

 will result in the largest values.

θ = 0∘

θ = 90∘

θ0 = 0
θ1 = 90
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In the lower left, the total MAEtotal MAE is shown in units of meV. Just below is shown the K1K1 value, which here is
defined as

 where
 is the cross section area. This quantity is mainly relevant when studying interfaces, where K1K1 is the

surface anisotropy energy density. More details about this can be found in the tutorial Magnetic
Anisotropy Energy of Fe-MgO-Fe MTJ structure.

MCA vs. angleMCA vs. angle

The dependence of the MCA value on the
 angle can be shown with a small python script.

import pylab

filename = 'FePt.hdf5'

# Load the MAE object
magnetic_anisotropy_energy = nlread(filename, MagneticAnisotropyEnergy)[0]

# Get the calculated angles
theta_angles = magnetic_anisotropy_energy.thetaAngles()

# Get the calculated MAE values
mae_values = [magnetic_anisotropy_energy.magneticAnisotropyEnergy(
    theta_0=0*Degrees, theta_1=theta).inUnitsOf(meV)
    for theta in theta_angles]

# Get the total MAE
k = mae_values[-1]

# Plot the results
pylab.figure()
pylab.plot(theta_angles, mae_values, 'ko', label='MAE study object')
pylab.plot(theta_angles, k*numpy.sin(theta_angles)**2, 'k-', label='$k\\cdot sin^2(\\theta)$')
pylab.xlabel('$\\theta$  (Deg.)')
pylab.ylabel('MAE  (meV)')
pylab.legend(loc=0)
pylab.show()

Run the script to produce the figure below. In the script, the MAE values are extracted for different theta
angles and plotted. The plot shows that the MAE follows a

K1 = MAE/(2 ⋅ A)
A

θ

⋅ sin2( )
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 dependence in agreement with several previous studies, where
 is the maximum MCA (MAE) value.

TotalEnergy calculationsTotalEnergy calculations

As mentioned above, the MAE calculated with the MagneticAnisotropyEnergy  study object is calculated
using the force theorem (FT), where the spin-orbit calculation is performed non-self-consistently from a
polarized calculation.

It is also possible to directly calculate the MAE from total energy differences of self-consistent spin-orbit
calculation as will be shown below. It can often speedup the calculation by first performing a relatively
inexpensive spin-polarized calculation and use this as an initial state for the more expensive Noncollinear
Spin-Orbit calculation.

We will now show how to setup a Noncollinear Spin-Orbit with the spins rotated in a particular direction.
After that we will use a slightly modified python script to loop over different spin-directions.

Go back to the  Script GeneratorScript Generator and delete the  MagneticAnisotropyEnergyMagneticAnisotropyEnergy block.

Add another  LCAOCalculatorLCAOCalculator block to the script and apply the same settings as above.

Open the first  LCAOCalculatorLCAOCalculator block and change the SpinSpin to Polarized.

Add an  InitialStateInitialState block and open it. Change the Spin TypeSpin Type to Non-collinear. Now you can change
the spin direction of some or all atoms by modifying the

 and
 angles and press ApplyApply. More instructions on how to setup advanced spin structures and use the

widget are available if you press the How-ToHow-To button.

k ⋅ sin2(θ)
k

θ
ϕ
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Close the InitialState widget and add a  TotalEnergyTotalEnergy analysis to the script. The script should now
look as in the figure below.

Below we provide a script that loops over initial state angles. In order to understand this script, we first
take a look at the current script and learn how to modify it. Send the script to the EditorEditor and apply the
following changes (see image below):

Add object_id='Polarized'  to the nlsave  command in line 51.

Add the line
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initial_state = nlread('FePt-SO-SCF.hdf5', object_id='Polarized')[0]

after the definition of initial_spin  on line 95.

When setting the calculator, add initial_state=initial_state  to the setCalculator function.

The script you now have, will first perform a spin-polarized calculation and save the result. After that, a
spin-orbit calculation is performed using the polarized calculation as the initial state and with the spins
rotated by the specified angles. This procedure can be done for several angles and is most easily done by
inserting a for loop over angles. This is done in the script  FePt.py, where the angles are setup to be the
same as used in the MagneticAnisotropyEnergyMagneticAnisotropyEnergy object above. Download the script and save it to your
working directory and submit the calculation with the Job ManagerJob Manager.

On a single node with 24 cores the calculation takes around 10 minutes, i.e. approximately the same time
of the MagneticAnisotropyEnergyMagneticAnisotropyEnergy object. However, for larger structures with more atoms, it can be
expected that the self-consistent calculations are significantly more time consuming than the
MagneticAnisotropyEnergy  study object.

Compare FT and TotalEnergy resultsCompare FT and TotalEnergy results

When the calculation is done we are ready to compare the FT results from the MagneticAnisotropyEnergyMagneticAnisotropyEnergy
object with the self-consistent total energies just calculated.

Download and run the script  FePt-SO-SCF-loop-over-angles.py to obtain the plot shown below.

It is obvious from the plot that the FT results matches very well with the self-consistent total energies.
This finding is in agreement with already published results [3], [5].

You have now learned how to perform MAE calculation using (i) the MagneticAnisotropyEnergy  study
object which uses the force theorem and non-selfconsistent spin-orbit calculations and (ii) from total
energy differences of self-consistent spin-orbit calculations with different spin orientations. The two
approaches are seen to give very similar results, but using the MagneticAnisotropyEnergy  study object
allows for more analysis, such as atom- or orbital contributions to the MAE. More examples of this are
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provided in the tutorial Magnetic Anisotropy Energy of Fe-MgO-Fe MTJ structure.

Convergence of resultsConvergence of results

As mentioned above, the MAE values are very small quantities on the order of 1 meV/atom. As has been
noticed in several papers, e.g. [3], [5], it often requires a very high k-point sampling to converge the MAE
values. In this section we investigate the convergence behavior of the most important numerical
parameters. These are parameters on the LCAOCalculatorLCAOCalculator:

K-point sampling

Density mesh cutoff

Basis set

Occupation function broadening

 TipTip

For more information on these parameters, you can see the relevant technical notes and manual
pages:

NumericalAccuracyParameters

Pseudopotentials and basis sets available in QuantumATK
Occupation Methods

For the MagneticAnisotropyEnergyMagneticAnisotropyEnergy object the main parameter to converge is

K-point sampling in the MagneticAnisotropyEnergyMagneticAnisotropyEnergy used for the force theorem (band energies)
calculation.

Convergence studies are easily performed in QuantumATKQuantumATK by setting up a calculation with the ScriptScript
GeneratorGenerator and sending the script to the EditorEditor where loops over the convergence parameters can be
setup. In this section we will focus on the result of such calculations with the aim of bringing awareness
to the importance of checking for convergence. All calculations in this section have been performed with
the occupation function in the FermiDirac  (default) with a broadening of 50 meV (corresponding to 580
Kelvin).

We begin with the parameters on the LCAOCalculatorLCAOCalculator. In the figure below we show the calculated MAE as
function of k-point density. We emphasize that the default of 4 Å in the calculator is not enough in this
case. The value of 7 Å used in the above calculation is reasonably well converged, although for fully
converged results a k-point density > 15 Å is required. The data have been obtained with a density mesh
cutoff of 120 Hartree and a k-point density in the MagneticAnisotropyEnergyMagneticAnisotropyEnergy object of 16 Å.
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The figure below show dependence of the MAE on the density mesh cutoff. Although the data might not
look fully converged, we note that the absolute variation is much smaller than in the figure above. The
default value of 120 Hartree seems to be converged to no more than an 0.05 meV error. The data for this
figure have been obtained with a k-point density of 16 Å in both the LCAOCalculatorLCAOCalculator and in the
MagneticAnisotropyEnergyMagneticAnisotropyEnergy object.

Another numerical parameter to check for convergence is the LCAO basis set size. The table below show
the MAE results obtained with Medium, High, and Ultra basis sets. We observe that the calculated MAE
value are almost the same for all LCAO basis set sizes with variations less than 0.1 meV indicating that
the Medium basis used above is sufficient.

LCAO Basis setLCAO Basis set

MediumMedium HighHigh UltraUltra

2.55 meV 2.49 meV 2.57 meV

We next address the convergence of the MAE values with respect to the k-point sampling in the
MagneticAnisotropyEnergyMagneticAnisotropyEnergy object. The figure below show results obtained with a density mesh cutoff of
120 Hartree and a k-point density of 16 Å in the LCAOCalculatorLCAOCalculator. We see that the k-point density of 17 Å
used above is reasonably well converged and above 20 Å, the results are essentially constant.
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We finally consider the convergence of the broadening used in the occupation method, in this case the
Fermi-Dirac occupation function. The main reasoning for using a finite broadening in the occupation
function is to be able to use a lower k-point sampling. This is illustrated in the figure below. The figure
shows four subplots. The data in each subplot has been calculated with a constant k-point density in the
self-consistency (SCF) loop and the non-self-consistent spin-orbit calculation. This k-point density is
shown in the title of each sub-plot. In a particular sub-plot, we show the MAE vs. k-point density used in the
MagneticAnisotropyEnergyMagneticAnisotropyEnergy (MAE) object for four different occupation function broadenings: 5, 10, 20, and
50 meV.

We first observe that for high enough SCF k-point densities (16 Å or 24 Å), and sufficiently high MAE k-
point density (> 10 Å), all curves are essentially on top of each other, showing that the value of the
occupation function broadening is less important. However, for an intermediate SCF k-point density of 7
Å, we see that the curve for 50 meV broadening is closer to the converged MAE value of 2.5 meV than the
curves with lower broadening.

At the lowest SCF k-point density of 4 Å (left-most plot) we see that none of the curves reaches the
converged value of 2.5 meV.

 ImportantImportant

Convergence of SCF k-point density and occupation function broadening goes hand in hand. When
changing the occupation function broadening, the required k-point sampling also changes.

COSMICS projectCOSMICS project

The MagneticAnisotropyEnergyMagneticAnisotropyEnergy study object has been developed within the project COSMICS founded by
the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 766726.
Details about the object can be found here MagneticAnisotropyEnergy. Application of the
MagneticAnisotropyEnergy object to metallic slabs and comparison with QuantumEspresson and tight-
binding calculations are presented in ref [5].

More information about the COSMICS project can be found here: http://cosmics-h2020.eu/
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