
1
2
2
2
3
5
6
6
6
6
9
9

10
10
11
12
13
13
14

Table of Contents

Table of Contents
Silicon nanowire field-effect transistor

Introduction
Band structure of a Si(100) nanowire

Building the nanowire
Setting up and running the calculations

TB09 meta-GGA c-parameter
Running the calculations
Analyzing the results
Detailed band structure analysis

Si(100) nanowire FET device
FET device configuration
Setting up the gate
Build the device
Doping the Si(100) wire

Zero gate voltage calculation
Analyzing the results
Performing a gate scan
Analyzing the gate scan

1/15

Downloads & Links

 PDF
Introduction to QuantumATK
ATK Reference Manual
 bandstructure_analyzer.py
 nanodevice_gatescan.py
 conductance_plot.py

Docs » Tutorials » Tubes, ribbons and other 1D nanostructures » Silicon nanowire field-effect transistor

Silicon nanowire field-effect transistor

Version: 2016.0

Introduction

This tutorial shows you how to set up and perform calculations for a device based on a silicon nanowire.
You will define the structure of a hydrogen passivated Si(100) nanowire, and set up a field-effect
transistor (FET) structure with a cylindrical wrap-around gate. The tutorial ends with calculations of the
device conductance as a function of gate bias.

 Note

You will primarily use the graphical user interface QuantumATK for setting up and analyzing the
results. If you are not familiar with QuantumATK, please go through the tutorial Introduction to
QuantumATK.

The underlying calculation engines for this tutorial are ATK-DFT and ATK-SE. A complete description
of all the parameters, and in many cases a longer discussion about their physical relevance, can be
found in the ATK Reference Manual.

Band structure of a Si(100) nanowire

First step is to set up the Si(100) nanowire and optimize the geometry. You should use the ATK-DFT
calculator for this. We then compute the band structure of the nanowire using 3 different computational
models; DFT-GGA, DFT-MGGA, and the Extended Hückel method.

 QuantumATK

 Try it!

 QuantumATK

 Contact

2/15

Building the nanowire

Open QuantumATK and create a new empty project called “silicon_nanowire”. Then launch the Builder.

Go to Add ‣ From Database and type “silicon fcc” to locate the diamond phase of silicon.

Add the Silicon (alpha) bulk configuration to the Stash (double-click or use the icon).

In the Builder, use the Builders ‣ Surface (Cleave) tool to create the Si(100) facet:

keep the default (100) cleave direction, and click Next;

keep the default surface lattice, and click Next;

keep the default supercell, which will ensure that the wire direction is perpendicular to the surface, and
click Next.

Click Fińish to add the cleaved structure to the Stash.

3/15

Next, use the Bulk Tools ‣ Repeat tool to repeat the structure twice along the A and B directions:

Finalize the nanowire by following these steps:

use the Bulk Tools ‣ Lattice Parameters tool to set the A and B lattice vector lengths to 20 Å;

use the Coordinate Tools ‣ Center tool to center the structure along all directions;

go to Coordinate Tools ‣ Custom Passivator and apply the 4(SP3) type hydrogen passivation to the
nanowire.

4/15

Send the H-passivated Si(100) nanowire to the Script Generator by using the in the lower right-hand
corner of the Builder window.

Setting up and running the calculations

You should now relax the nanowire and compute the band structure. The DFT-GGA method is used for
geometry optimization, while the band structure is computed using DFT-GGA, DFT-MGGA, and the
Extended Hückel model.

 Important

The TB09 meta-GGA and Extended Hückel models can not be used for relaxation.

In the Script Generator, change the default output file name to si_100_nanowire.hdf5 , and add the
following blocks to the script:

 New Calculator

 OptimizeGeometry

 Bandstructure

 New Calculator

 Bandstructure

 New Calculator

 Bandstructure

Open the first New Calculator block, and make the following changes to the calculator settings:

set the k-point sampling to 1x1x11;

change the exchange-correlation potential to GGA.

Open the second New Calculator block, and make the following changes:

5/15

set the k-point sampling to 1x1x11;

change the exchange-correlation potential to MGGA.

Open the third New Calculator block, and make the following changes:

select the ATK-SE: Extended Hückel calculator;

uncheck “No SCF iteration” to make the calculation selfconsistent;

set the k-point sampling to 1x1x11;

increase the density mesh cut-off to 20 Hartree;

go to the Hückel basis set tab, and select the “Hoffmann.Hydrogen” and “Cerda.Silicon [GW diamond]”
basis sets. The latter has been fitted to GW calculations, and gives an excellent description of the
silicon bandstructure, including the value of the band gap.

Finally, open each Bandstructure script block and set the number of points per segment to 100.

 Tip

The default value for the density mesh cut-off is often sufficient, but by increasing it you may
sometimes obtain a slightly higher accuracy at a small additional computational cost.

TB09 meta-GGA c-parameter

You should also adjust the value of the c-parameter used in the TB09 meta-GGA method. This is
essentially a fitting parameter that can be used to adjust the calculated band gap of the material. If the c-
parameter is not defined by the user, a value is automatically calculated from the electronic structure of
the material. However, this will not work for a system with vacuum regions, like a nanowire.

You will therefore use a fixed value, c=1.0364, which has been fitted to yield an accurate prediction of the
fundamental band gap in silicon (1.13 eV).

Transfer the QuantumATK Python script to the Editor using the icon. Then locate the script line
defining the variable exchange_correlation for the MGGA exchange-correlation, and set the fixed value of
c to 1.0364, as illustrated below.

#--
Exchange-Correlation
#--
exchange_correlation = MGGA.TB09LDA(c=1.0364)

Running the calculations

Save the QuantumATK Python script as si_100_nanowire.py and execute it using the Job Manager. It
will take just a few minutes to complete the calculations.

Analyzing the results

Once the calculations have finished, the HDF5 data file si_100_nanowire.hdf5 should appear on the
QuantumATK LabFloor. Locate the Bandstructure items inside this file. The order of the item IDs
corresponds to the order in which the band structures were computed and saved, i.e. GGA, MGGA, and
Hückel.

Select one of the band structures and open the Bandstructure Analyzer in the right-hand Panel Bar to
inspect the computed band structure. You can do this for all three band structures, or use the Compare
Data plugin to plot a direct comparison of the three band structures.

Detailed band structure analysis

6/15

In order to compare the band gaps obtained with the three computational models, it is convenient to use
 bandstructure_analyzer.py, which uses QuantumATK Python for detailed analysis of the gaps in a band
structure. The script is shown below:

 1 from QuantumATK import *
 2 import pylab
 3 # Custom analyzer for calculating the band gap of a bandstructure
 4
 5 #helper function to find minima
 6 def fitEnergyMinimum (i_min, energies, k_points, nfit=3):
 7 """
 8 Function for fitting the energy minimum located around i_min.
 9
 10 @param i_min : approximate position of the energy minimum.
 11 @param energies: list of energies.
 12 @param k_points: list of k_points which correspond to the energies.
 13 @param nfit : order of the polynomium.
 14 @return d2_e, e_min, k_min : second derivative of energy,
 15 minimum energy, minimum k_point.
 16 """
 17 #list of energies
 18 n = len(energies)
 19 efit = numpy.array([energies[(n+i_min-nfit/2+i)%n] for i in range(nfit)])
 20 kfit = numpy.array([i-nfit/2 for i in range(nfit)])
 21 #special cases
 22 if i_min == 0: #assume bandstructure symmetric around zero
 23 for i in range(nfit/2):
 24 efit[i] = energies[nfit/2-i]
 25
 26 if i_min == n-1: #assume bandstructure symmetric around end point
 27 for i in range(nfit/2+1, nfit):
 28 efit[i] = energies[n-1+nfit/2-i]
 29
 30 #make fit
 31 p = numpy.polyfit(kfit,efit,2)
 32 i_fit_min = -p[1]/2./p[0]
 33 pf = numpy.poly1d(p)
 34 e_min = pf(i_fit_min)
 35 i0 = int(i_fit_min+i_min+n)
 36 w = i_fit_min+i_min+n-i0
 37 k_min = (1-w)*k_points[i0%n]+w*k_points[(i0+1)%n]
 38
 39 return p[0], e_min, k_min
 40
 41 def analyseBandstructure(bandstructure, spin):
 42 """
 43 Function for analysing a band structure and calculating bandgaps.
 44
 45 @param bandstructure : The bandstructure to analyze
 46 @param spin : Which spin to select from the bandstructure.
 47 @return e_val, e_con, e_gap : maximum valence band energy,
 48 minimum conduction band energy,
 49 and direct band gap.
 50 """
 51 energies = bandstructure.evaluate(spin=spin).inUnitsOf(eV)
 52
 53 #some placeholder variable to help finding the extrema
 54 e_valence_max = -1.e10
 55 e_conduction_min = 1.e10
 56 e_gap_min = 1.e10
 57 i_valence_max = 0
 58 i_conduction_min = 0
 59 i_gap_min = 0
 60 n_valence_max = 0
 61 n_conduction_min = 0
 62 n_gap_min = 0
 63

7/15

 63
 64 # Locate extrema
 65 for i in range(energies.shape[0]):
 66 # find first state below Fermi level
 67 n = 0
 68 while n < energies.shape[1] and energies[i][n] < 0.0:
 69 n += 1
 70
 71 # find maximum of valence band
 72 if (energies[i][n-1] > e_valence_max):
 73 e_valence_max = energies[i][n-1]
 74 i_valence_max = i
 75 n_valence_max = n-1
 76 # find minimum of conduction band
 77 if (energies[i][n] < e_conduction_min):
 78 e_conduction_min=energies[i][n]
 79 i_conduction_min=i
 80 n_conduction_min=n
 81 # find minimum band gap
 82 if (energies[i][n]-energies[i][n-1] < e_gap_min):
 83 e_gap_min = energies[i][n]-energies[i][n-1]
 84 i_gap_min = i
 85 n_gap_min = n-1
 86
 87 # Print out results
 88 a_val, e_val, k_val = fitEnergyMinimum(i_valence_max,
 89 energies[:,n_valence_max],
 90 bandstructure.kpoints())
 91 print('Valence band maximum %7.4f eV at [%6.4f, %6.4f,%6.4f] ' \
 92 %(e_val, k_val[0], k_val[1], k_val[2]))
 93
 94 a_con, e_con, k_con = fitEnergyMinimum(i_conduction_min,
 95 energies[:,n_conduction_min],
 96 bandstructure.kpoints())
 97 print('Conduction band minimum %7.4f eV at [%6.4f, %6.4f,%6.4f] ' \
 98 %(e_con, k_con[0], k_con[1], k_con[2]))
 99
100 print('Fundamental band gap %7.4f eV ' % (e_con-e_val))
101
102 a_gap, e_gap, k_gap = fitEnergyMinimum(i_gap_min,
103 energies[:,n_gap_min+1]- energies[:,n_gap_min],
104 bandstructure.kpoints())
105
106 print('Direct band gap %7.4f eV at [%6.4f, %6.4f,%6.4f] ' \
107 %(e_gap, k_gap[0], k_gap[1], k_gap[2]))
108 return e_val, e_con, e_gap
109
110 def analyzer(filename, **args):
111 """
112 Find band gaps of band structures in netcdf file.
113 """
114
115 if filename == None:
116 return
117
118 #read in the bandstructure you would like to analyze
119 bandstructure_list = nlread(filename, Bandstructure)
120 if len(bandstructure_list) == 0 :
121 print('No Bandstructures in file ', filename)
122 return
123
124 for s in [Spin.All]:
125 b_list = []
126 n = 0
127 for b in bandstructure_list:
128 print('Analyzing bandstructure number ', n)
129 b_list = b_list + [analyseBandstructure(b,s)]
130 print()

8/15

131 print()
132 n += 1
133
134 x = numpy.arange(len(b_list))
135 e_val = numpy.array([b[0] for b in b_list])
136 e_con = numpy.array([b[1] for b in b_list])
137 e_indirect = e_con-e_val
138 e_direct = numpy.array([b[2] for b in b_list])
139
140
141 analyzer("si_100_nanowire.hdf5")

Download the script (link:  bandstructure_analyzer.py), and execute it using the Job Manager. You
should get the following output:

Analyzing bandstructure number 0
Valence band maximum -1.6395 eV at [0.0000, 0.0000,0.0121]
Conduction band minimum 1.6400 eV at [0.0000, 0.0000,0.0000]
Fundamental band gap 3.2795 eV
Direct band gap 3.2799 eV at [0.0000, 0.0000,0.0000]

Analyzing bandstructure number 1
Valence band maximum -1.8434 eV at [0.0000, 0.0000,0.1501]
Conduction band minimum 1.8450 eV at [0.0000, 0.0000,0.0000]
Fundamental band gap 3.6884 eV
Direct band gap 3.6914 eV at [0.0000, 0.0000,0.0026]

Analyzing bandstructure number 2
Valence band maximum -1.7737 eV at [0.0000, 0.0000,0.0000]
Conduction band minimum 1.7735 eV at [0.0000, 0.0000,0.0000]
Fundamental band gap 3.5472 eV
Direct band gap 3.5472 eV at [0.0000, 0.0000,0.0000]

The output shown above gives the band structure analysis for the DFT-GGA, DFT-MGGA, and Extended
Hückel models. The script gives the valence band maximum, conduction band minimum, fundamental
band gap, and direct band gap from the valence band maximum. The fundamental band gap for the
Si(100) nanowire is significantly larger than that of bulk silicon, and all three computational models place
it at the Gamma point or close to it.

Furthermore, the TB09-MGGA model gives a gap which is about 0.5 eV larger than the GGA model, which
is in accordance with the difference in the band gaps of bulk Si calculated with the GGA and TB09-MGGA
methods. The Extended Hückel model is in agreement with the TB09-MGGA method.

Si(100) nanowire FET device

You will now consider a Si(100) nanowire field-effect transistor with a cylindrical wrap-around gate. You
should first build the device configuration, including the gate and doping of the silicon nanowire, and then
use the Extended Hückel model to compute device properties such as zero-bias transmission and
conductance vs. gate voltage.

FET device configuration

You should use the relaxed nanowire configuration as a starting point for building the device. The
contents of the file si_100_nanowire.hdf5 should be available on the QuantumATK LabFloor. It contains
four bulk configurations: The first one (gID000) is the unrelaxed structure, while the remaining ones
correspond to the relaxed structure, calculated with different methods (DFT-GGA, DFT-MGGA and
Extended Hückel).

Send the configuration with ID gID001 to the Builder. It will appear in the Builder Stash. Then use the

9/15

Bulk Tools ‣ Repeat tool to repeat the configuration 12 times along C.

Setting up the gate

Next, use the Miscellaneus ‣ Spatial regions tool to define the metallic wrap-around gate:

First, add a new metallic region with a value of 0 Volt.

Under Geometry, select Tube to create a cylindrical region.

Define the geometry of the tube by entering the parameters shown in the image below. The cylinder
will extend to the edge of the simulation cell along A and B, and will cover most of the central part of
the nanowire along C.

Build the device

Use the Device Tools ‣ Device From Bulk tool to build the Si(100) nanowire FET device from the bulk
nanowire configuration. Use the default suggestion for the electrode lengths.

10/15

Then send the device configuration to the Script Generator.

Doping the Si(100) wire

You will now introduce doping in the nanowire. Instead of explicitly adding dopant atoms, which would
result in a very high doping concentration for this relatively small device, you will set up the system as a p-
i-n junction, by adding certain amounts of charge to the electrodes. This will lead to shifts in the Fermi
levels of the two electrodes, resulting in a built-in potential in the device.

Use the mouse to select all atoms in the left electrode and open the Miscellaneus ‣ Doping tool. In the
window that shows up, choose the following settings:

Doping Type: p-type

Value: 4e

Unit: e/cm (left electrode)

Next, close the Doping window and select all atoms in the right electrode. Open again the Doping tool, and
choose the following settings:

Doping Type: n-type

Value: 4e

Unit: e/cm (right electrode)

+19

3

+19

3

11/15

Zero gate voltage calculation

You will now calculate the transmission spectrum of the p-i-n doped Si(100) nanowire FET device at zero
gate potential using the Extended Hückel model. In the Script Generator, change the default output file
name to si_100_nanowire_fet_pin.hdf5 and add the following blocks to the script:

 New Calculator

 TransmissionSpectrum

 ElectronDifferenceDensity

 ElectrostaticDifferencePotential

Open the New Calculator block, select the Extended Hückel device calculator, and set up the calculator
parameters similarly to what you did above for the bulk nanowire calculations:

Uncheck “No SCF iteration” to make the calculation selfconsistent.

12/15

Increase the density mesh cut-off to 20 Hartree.

Go to the Hückel basis set tab and select the “Hoffmann.Hydrogen” and “Cerda.Silicon [GW diamond]”
basis sets.

Under Poisson solver, use Neumann boundary conditions in the A and B directions.

In the TransmissionSpectrum block, set the energy range to -4 to +4 eV with 301 points.

Save the QuantumATK Python script as si_100_nanowire_fet_pin.py and execute it using the Job
Manager. The calculation will take about 30 minutes if executed in parallel with 4 MPI processes.

 Note

It would be physically incorrect to use periodic boundary conditions along the A and B directions when
there are gates present in the system. We therefore choose Neumann boundary conditions along A
and B instead.

Analyzing the results

Once the calculation is completed, locate the file si_100_nanowire_fet_pin.hdf5 HDF5 file on the
Labfloor and unfold it. Select the TransmissionSpectrum item and use the Transmission Analyzer to plot
the transmission spectrum.

The transmission spectrum is shown above. The transmission is zero inside the nanowire band gap,
which appears to be roughly 7 eV, significantly larger than computed earlier. This is due to the p- and n-
doping, which has moved the valence and conduction band edges with respect to the Fermi level.

Performing a gate scan

Finally, you will calculate the transmission spectrum for different values of the gate bias. You can then
plot the device conductance as function of gate bias.

The calculations are most conveniently done using QuantumATK Python scripting. Use the script
 nanodevice_gatescan.py for this. Download it to the active QuantumATK project folder, which also
contains the file si_100_nanowire_fet_pin.hdf5 . The script is reproduced below.

13/15

 1 # Read in the old configuration
 2 device_configuration = nlread("si_100_nanowire_fet_pin.nc",DeviceConfiguration)[0]
 3 calculator = device_configuration.calculator()
 4 metallic_regions = device_configuration.metallicRegions()
 5
 6 # Define gate_voltages
 7 gate_voltage_list=[-1, 0, 1.0, 2.0, 3.0, 4.0, 5.0, 6, 7, 8,]*Volt
 8 # Define output file name
 9 filename= "nanodevice_huckel.nc"
10
11 # Perform loop over gate voltages
12 for gate_voltage in gate_voltage_list:
13 # Set the gate voltages to the new values
14 new_regions = [m(value = gate_voltage) for m in metallic_regions]
15 device_configuration.setMetallicRegions(new_regions)
16
17 # Make a copy of the calculator and attach it to the configuration
18 # Restart from the previous scf state
19 device_configuration.setCalculator(calculator(),
20 initial_state=device_configuration)
21 device_configuration.update()
22 nlsave(filename, device_configuration)
23
24 # Calculate analysis objects
25 electron_density = ElectronDifferenceDensity(device_configuration)
26 nlsave(filename, electron_density)
27
28 electrostatic_potential = ElectrostaticDifferencePotential(device_configuration)
29 nlsave(filename, electrostatic_potential)
30
31 transmission_spectrum = TransmissionSpectrum(
32 configuration=device_configuration,
33 energies=numpy.linspace(-4,4,301)*eV,
34 kpoints=MonkhorstPackGrid(1,1),
35 energy_zero_parameter=AverageFermiLevel,
36 infinitesimal=1e-06*eV,
37)
38 nlsave(filename, transmission_spectrum)
39 nlprint(transmission_spectrum)

Execute the script using the Job Manager or from a command line. The script consists of 8 different
calculations and it will take about 5 hours running in parallel with 4 MPI processes. You can, however,
decide to reduce this time by reducing the number of gate voltages that the transmission spectrum is
computed for – simply edit the variable gate_voltage_list .

Analyzing the gate scan

Download and execute the script  conductance_plot.py, which reads the computed transmission
spectra, calculates the conductance for each, and plots the conductance against gate bias.

14/15

Next 

 1 # Read the data
 2 transmission_spectrum_list = nlread("nanodevice_huckel.hdf5", TransmissionSpectrum)
 3 configuration_list = nlread("nanodevice_huckel.hdf5", DeviceConfiguration)
 4
 5 conductance = numpy.zeros(len(configuration_list))
 6 gate_bias = numpy.zeros(len(configuration_list))
 7 for i, configuration in enumerate(configuration_list):
 8 transmission_spectrum = transmission_spectrum_list[i]
 9 energies = transmission_spectrum.energies().inUnitsOf(eV)
10 spectrum = transmission_spectrum.evaluate()
11 gate_bias[i] = configuration.metallicRegions()[0].value().inUnitsOf(Volt)
12 conductance[i] = transmission_spectrum.conductance()
13
14 # Sort the data according to the gate bias
15 index_list = numpy.argsort(gate_bias)
16
17 # Plot the spectra
18 import pylab
19 pylab.figure()
20 ax = pylab.subplot(111)
21 ax.semilogy(gate_bias[index_list], conductance[index_list])
22 ax.set_ylabel("Conductance (S)", size=16)
23 ax.set_xlabel("Gate Bias (Volt)", size=16)
24 ax.set_ybound(lower=1e-26)
25
26 for g,c in zip(gate_bias[index_list], conductance[index_list]):
27 print(g,c)
28 pylab.show()

 Previous

© Copyright 2023 Synopsys, Inc. All Rights Reserved.

15/15

	Table of Contents
	Silicon nanowire field-effect transistor
	Introduction
	Band structure of a Si(100) nanowire
	Building the nanowire

	Setting up and running the calculations
	TB09 meta-GGA c-parameter
	Running the calculations
	Analyzing the results
	Detailed band structure analysis

	Si(100) nanowire FET device
	FET device configuration
	Setting up the gate
	Build the device
	Doping the Si(100) wire

	Zero gate voltage calculation
	Analyzing the results
	Performing a gate scan
	Analyzing the gate scan

