Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>1</td>
</tr>
<tr>
<td>Introduction to QuantumATK</td>
<td>2</td>
</tr>
</tbody>
</table>
QuantumATK gives you access to a powerful set of modeling tools for investigating a variety of systems:

- Density Functional Theory
- Semi-Empirical Tight Binding
- Classical Potentials
- Non-Equilibrium Green's Functions

In this tutorial we will give a short introduction to the basic workflow of setting up a QuantumATK calculation and analyzing the results using the graphical user interface QuantumATK.

QuantumATK is designed with ease-of-use in mind – you can focus on the properties of the system under investigation, and let the software handle the details of preparing input files for the calculations, running them, and analyzing the resulting data.

Note

We will assume that a working copy of QuantumATK has already been installed, as described in the Installation Guide.

Table of Contents (click them to start!):

- Getting Familiar with QuantumATK
- Band Structure of a SiC Crystal
- Transport in a graphene nanoribbon with a distortion
- Building a Graphene Nanoribbon Device

During the tutorial we use some convenient mouse and keyboard hotkeys, illustrated by the symbols shown below:
<table>
<thead>
<tr>
<th>Left Click</th>
<th>Double Click</th>
<th>Right Click</th>
<th>Wheel Click</th>
<th>Wheel Scroll</th>
<th>Hold Left Mouse Button</th>
<th>Hold Right Mouse Button</th>
<th>Hit Keyboard Button</th>
<th>Hold Keyboard Button</th>
</tr>
</thead>
</table>

© Copyright 2020 Synopsys, Inc. All Rights Reserved.