<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>1</td>
</tr>
<tr>
<td>Band Structure of a SiC Crystal</td>
<td>2</td>
</tr>
<tr>
<td>Workflow</td>
<td>2</td>
</tr>
<tr>
<td>Build SiC Crystal</td>
<td>2</td>
</tr>
<tr>
<td>Setup QuantumATK Calculation</td>
<td>4</td>
</tr>
<tr>
<td>New Calculator Block</td>
<td>5</td>
</tr>
<tr>
<td>Analysis Blocks</td>
<td>6</td>
</tr>
<tr>
<td>Saving the Script</td>
<td>6</td>
</tr>
<tr>
<td>Run Calculations</td>
<td>7</td>
</tr>
<tr>
<td>Calculation Output</td>
<td>7</td>
</tr>
<tr>
<td>Analyze and Visualize Results</td>
<td>8</td>
</tr>
<tr>
<td>Band Structure</td>
<td>9</td>
</tr>
<tr>
<td>Electron Density</td>
<td>10</td>
</tr>
<tr>
<td>Additional Analysis</td>
<td>12</td>
</tr>
<tr>
<td>Plotting the Density of States</td>
<td>13</td>
</tr>
<tr>
<td>1D Projection of the Electrostatic Potential</td>
<td>14</td>
</tr>
</tbody>
</table>
You will here learn how to use QuantumATK for calculating the band structure and other properties of a SiC crystal. We shall not discuss the science of such a calculation much; the purpose of the tutorial is to show how to operate QuantumATK, specifically how to set up simple calculations and visualize the results.

**Workflow**

Start QuantumATK and create a new project with the title you prefer, e.g. *SiC_study*. Then open the project.
Start NanoLab, Create a Project and Open It

Open Project

QuantumATK

Open Project

QuantumATK

Open Project

QuantumATK

Open the Builder

Remember! Any time you can check LabFloor to see your files
Use the Database plugin to quickly build the SiC bulk configuration.

**Tip**

Several QuantumATK tools contain a 3D preview of the currently active configuration. Use the right mouse button to **rotate** the 3D view, use the scroll wheel to **zoom** (or hold down Ctrl and right mouse button and move the mouse), and press the scroll wheel and move the mouse to **pan** the camera (or hold down Shift and the right mouse button and move the mouse).

**Setup QuantumATK Calculation**

You are now ready to setup an QuantumATK Python script that calculates the electronic ground state of
the SiC crystal followed by analysis of the band structure and electron density. This is what the Script Generator is used for ("Scripter" for short).

Transfer the SiC crystal from the Builder to the Scripter by clicking the Send to icon in the lower-right corner of the Builder window, and select “Script Generator” from the pop-up menu. The Scripter appears and the Builder window is automatically minimized.

The script already contains the SiC bulk configuration. Add the Calculator block and two Analysis blocks.

**New Calculator Block**

The calculator computes the ground state of the SiC crystal. It contains a wide range of settings, all of which have sensible default values. However, you will most often need to change at least a few of them in order to make the calculation match your scientific goals.

Double-click the New Calculator block when you wish to edit it:
**Analysis Blocks**

The **Bandstructure** and **ElectronDensity** blocks perform post-SCF analysis. Double-click the Bandstructure block to increase the Brillouin zone sampling:

**Saving the Script**

The QuantumATK script is now done, and it is good practice to immediately save it. Use the **File** menu in the **Script Generator**, or the keyboard shortcut Ctrl+Shift+S.
You need to run the QuantumATK Python script in order to execute the calculations. This can be done from a terminal:

```
atkpython example.py > example.log
```

A very convenient alternative is to use the Job Manager to run the script directly from inside QuantumATK:

- Click the in the lower-right corner of the Script Generator, and select “Job Manager” from the menu.
- The “Save As” dialog appears, prompting you to make sure the script is saved, followed by the Job Manager window and the “Select Machine” dialog.
- Choose a “Local” machine type, and click OK. The QuantumATK Python script is added to the job queue of the chosen machine.
- Select your script and click the button to start executing the calculation.

Tip

See the tutorials Local and Remote for more instructions on using the Job Manager for multi-CPU execution of QuantumATK Python scripts on your local machine and on remote supercomputers.

Calculation Output

Any output (data, log, etc.) should appear in the Project Files list. New .hdf5 files are automatically scanned and their contents displayed on the LabFloor.
Analyze and Visualize Results

The calculation has now finished and you are ready to study the results. To this end, return to the QuantumATK main window to select one of the saved data items and see the list of applicable analysis plugins.
Tip

Use the keyboard shortcut Alt+W to activate the **Windows** menu, which allows you to easily switch between different QuantumATK windows.

### Band Structure

The HDF5 data file is **SiC.hdf5**. Make sure the file is ticked in the Project Files list in order to see its contents on the LabFloor. You may have to expand the LabFloor item. Select the band structure item and click the **Bandstructure Analyzer** in the right-hand Panel Bar.
both the direct and indirect band gaps are given by the analyzer. In general it is easy to measure both the direct and indirect band gaps with NanoLab. In the present case we measure the indirect gap between the $\Gamma$ and $X$ points in reciprocal space:

1. Click the icon to activate the **Zoom to rectangle** function, and zoom into the relevant part of the band structure.

2. Deactivate Zoom, and use the mouse to measure the indirect band gap.

**Electron Density**

The **Viewer** is used to visualize configurations and also data that is represented on 3D grids. You can visualize the SiC unit cell and the self-consistent electron density in a single view:

1. Drop the SiC bulk configuration on the Viewer.

2. Select on the LabFloor the **ElectronDensity** item, and just drop it on the SiC visualization. Choose a cut-plane representation.
A default visualization style is used. Use the Properties tool in the Viewer panel bar to adjust the visualization settings as you prefer.
Tip

To export the visualization as an image, use the right mouse button menu Export image.

Additional Analysis

Suppose you now want to perform some additional analysis of the SiC crystal, e.g. compute the electronic Density Of States (DOS). This is easily done by creating and running a new QuantumATK Python script that uses the Analysis from File functionality.

Simply open the Script Generator and create the script as illustrated below. In the Analysis from File
block, load the saved HDF5 file Sic.hdf5. The widget should automatically detect and select the BulkConfiguration. Lastly, change the default output filename to Sic.hdf5 and save the script as Sic_analysis.py.

What happens in the QuantumATK Python script you just made is this:

1. The self-consistent electronic structure of the SiC bulk was previously calculated, so here we simply read that state using Analysis from File.
2. Two different post-SCF analyses are then performed; first the electrostatic difference potential is computed, and then the density of states. Both data items are appended to the existing data file Sic.hdf5.

Send the script to the Job Manager and run the calculations.

Plotting the Density of States

The SiC density of states is now easily plotted; select the DOS object on the LabFloor, p(), and click the 2D Plot plugin in the right-hand Panel Bar. You should now see a plot of the computed DOS vs. electron energy eigenvalue (referenced to the Fermi level). Use the mouse to zoom in on the plot if needed.
You can also plot the projected DOS using the Projection selector: Select the carbon atom (index 1) and tick only the p-shell in order to see the PDOS corresponding to the p-orbital of the C atom.

**1D Projection of the Electrostatic Potential**

The electrostatic difference potential (EDP) is represented on a 3D grid, and you could visualize it as an isosurface or a cut plane in the 3D Viewer. However, QuantumATK also offers a very convenient tool for creating 1D projections of 3-dimensional grid data – the 1D Projector:

- Select the EDP data item on the LabFloor, ![LabFloor](image), and click the 1D Projector plugin.
Choose "C" as the projection axis and "Sum" as the projection type. Then click **Add line** to produce the plot.

The plot above shows the summed EDP along the C-axis of the SiC bulk configuration, i.e. summed in the AB plane for each value of C. You can also choose to average the grid values instead of summing.
them. Use the “Through point” projection type to avoid summing or averaging the grid values altogether.