SYNOPSYS

First-Principles Simulations of 2D Material Heterojunction
Tunneling Field-Effect Transistors using QuantumATK

Daniele Stradi’, Petr A. Khomyakov?, Vaida Arcisauskaite?, Anders Blom? and Kurt Stokbro’

1 Synopsys Denmark, Fruebjergvej 3, DK-2100 Copenhagen, Denmark and
2 Synopsys, Inc., 690 E Middlefield Rd, Mountain View, CA 94043, USA

Abstract
_Two—dimensional (2D) materials are very attractive for the nanoelectronics industry since they could become

the new channel materials of the future nanoelectronics devices and solve the problems related to non-negligible quantization of Si electronic structure upon
scaling. Here, we present our group’s work on simulating a 2D materials-based heterojunction Tunneling Field-Effect Transistor (TFET) with Density
Functional Theory (DFT) and Non-Equilibrium Green’s Functions (NEGF) methods in the QuantumATK software suitel’?. Specifically, we consider a (SC) and
asymmetrically-contacted (ASC) TFET where the channel is formed by a heterojunction based on two-dimensional (2D) semiconductors: MoTez2|SnS25. In the
SC device, we use Au for both the source and drain metallic contacts, whereas in the ACS device, we use Al in the drain, in order to have a rather large work
function difference between the contacts. Our simulations show how the device trans-conductance of a TFET can be engineered by an appropriate choice of
the metallic electrodes. The results also highlight the importance of atomistic device simulations for the optimization of the electrical characteristics of
devices based on non-conventional materials.
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Conclusions: P :
- The drain-source current, IDS, is higher in the SC device than in the ASC device across the entire range of gate-source voltages. 10717 - Trans-conductance:
- In the SC device, IDS increases only by a factor of 10, whereas in the ASC device, IDS increases by about six orders of i Reverse-bias Ins-Ves
magnitude in the same VGs range. 10 Voo = 04V curves at the drain-
- The transconductance behavior can be understood from the combined analysis of the Hartree difference potential and of the -' 3OU_VC§Z\1/C\>/|T8§J€:
PLDOS. In the ASC device, the use of two metals with different work functions leads to an additional built-in electric field in the T s
channel region, which affects the device electrostatics and electronic structure. . \?Gi ol ’o
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