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Abstract: We present an efficient implementation of a surface Green’s-function (SGF) method for atomistic modeling of surfaces using density functional theory in a pseudopotential localized basis
set approach. Contrary to the traditional slab model for surface calculations, the SGF method couples the surface region to a bulk electron reservoir. The surface is thereby described as a truly
semi-infinite system, where charge transfer between the reservoir and the surface region is naturally included. We demonstrate the versatility of the SGF method in several applications to surfa
physics and chemistry problems that are inherently difficult to properly address with the traditional slab method.

LCAO implementation in the Atomistix ToolKit package Work Functions
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This SGF method allows us to model a surface as a truly semi-infinite system by coupling it to an 9
electron reservoir. {3

‘We have presented several applications of the SGF method to surface science problems that are
inherently difficult to properly address with the traditional slab method.
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The computational cost of the Green’s-function based surface calculations scales linearly with the
thickness of the surface, and therefore outperforms cubic-scaling slab calculations for large systems.

Given the demonstrated advantages of the SGF method as implemented in Atomistix ToolKit, we
expect it will contribute to extending the applicability of first-principles, atomistic modeling y VI RT UAL ATO M I ST I X

towards challenging problems in surface science. N AN O L AB TO 0 L KI T
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