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Motivation

Locating Saddle Points

Breakup of a Boron Cluster Long Timescale Dynamics in VNL/ATK

The Atomistix ToolKit developed by QuantumWise supports a
number of methods for calculating long timescale dyanmics. All
of these methods can be used with DFT, semi-empirical methods,
and classical force fields.

The break-up of a boron cluster in a bulk silicon lattice was modeled
at 500 K using energies and forces from GGA DFT.|6] Boron is
commonly used as a dopant for p-type silicon. The high B
concentration required for nanoscale devices can lead to dopant
clustering and deactivation. Thus, the kinetics of dopant cluster
formation and break-up is of interest to the semiconductor industry.

HTST casts the problem of calculating reaction rates into one of
locating the relevant saddle points. Once a saddle point has been
timestep must be on the timescale of atomic vibrations (1-5 fs), located Eqgn. 1 can be used to compute the reaction rate at any
while the timescale of solid-state reactions range from nanoseconds temperature (although HTST is typically valid from about 200 -
(vacancy diffusion), to milliseconds (surface catalysis), to years 800 K).

(material aging). A typical solid-state system will spend many
vibrational periods oscillating around the minimum before

Reactions in the solid state are too slow to efficiently study with
molecular dynamics (MD) simulations. This because the MD

® Adaptive Kinetic Monte Carlo Simulations

1. Run high temperature MD simulations

recievingenough kinetic energy along the correct degree of freedom 2. Run high temperature MD simulations
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Figure 1. Time trace of a MD trajectory projected along a reaction coordinate. The barrier is larger than 0 2 4 6 8 10 12 14 16 18 S
the average kinetic energy (kBT), which means there will be a large timescale seperation Reaction Coordinate ( A)
between vibrations in the initial state and the reaction. Kinetic Monte Carlo (KMC) [4] models state-to-state dynamics as
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significant damage to nearby materials. It is often energetically
favorable for these vacancies to cluster together and the formation
of large clusters can lead to a sudden structural failure.
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® Kinetic Monte Carlo simulations

® Saddle point optimization

Adaptive Kinetic Monte Carlo
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Combining a method for locating saddle points, HT'ST, and KMC
gives rise to adaptive kinetic Monte Carlo (AKMC)|5], which is an
efficient ab-initio method for calculating the long timescale
dyanamics of solid-state systems.
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N : number of atoms

£ 12 : stable vibrational frequencies at the reactant and saddle point

ET E9 : energies at the minimum and saddle point
kp : Boltzmann’s constant

T’ : temperature
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Figure 5. Four AKMC trajectories of 50 randomly distributed vacancies in a 10x10x 10 supercell of bcc

Fe. (a) Average vacancy cluster size; (b) fraction of monovacancies (MV); and (c) potential
energy of the minima along the trajectories.

In this simulation we examined the timescale of vacancy cluster
formation at 150 C using an EAM interatomic potential.[3] The

initial configuration had 50 randomly placed vacancies in a
10x10 x 10 supercell of bce Fe.
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