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Outline

• Why do we need machine-learned force fields (ML FFs)?

• A few details on moment tensor potentials (MTPs)

• How to use automated training protocols to fit ML FFs to solve realistic problems

• Example applications of ML FFs for complex materials and interfaces
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Why Do We Need Machine-Learned Force Fields?
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Why Do We Need Machine-Learned Force Fieds?

Accurate dynamical 
modeling is limited to ~100 

atoms due to TAT limitations

Yet many problems of 
interest to the industry 
require 10,000+ atoms 

to be simulated

Not practical with 
quantum-based 
methods (TAT) or 
traditional force fields 
(QoR)

• Structure generation for further DFT studies
• Mechanical properties (fracture)
• Thermal properties
• Electron-phonon scattering
• Diffusion
• Process simulations
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Goal of Machine-Learned Force Fieds

AB INITIO
(DFT)

· Ab initio level accuracy
· Low computational cost
· Mathematically inspired
· Flexible
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1. Smart generation of training data

2. Effective training & retraining when more data is added

3. Robust validation protocols

3.5 Efficient execution

3.5 Key Ingredients to Be Successful with ML (in General)
M

TP

• Solve realistic problems
• Make ML FFs easy and 

efficient
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A Few Details on Moment Tensor Potentials (MTPs)
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MTP Is One of the Most Accurate and Efficient ML Potentials

Performance

Ac
cu

ra
cy

A. V. Shapeev: "Moment Tensor Potentials: A Class of Systematically 
Improvable Interatomic Potentials", Multiscale Modeling & Simulation (2016)
Y. Zuo et al.: “A Performance and Cost Assessment of Machine Learning 
Interatomic Potentials”, J. Phys. Chem. A, 124, 731, (2020)

Advantages of MTP
o Ideal balance between efficiency and accuracy
o Natural descriptors for atomistic models

• Many-body descriptors for effective 
structure property relationship

o Linear regression model for fitting
• Fast to evaluate
• Training data can be increased without 

performance loss during prediction
o Systematically improvable
o Advantages for multi-element systems

• Global parameters and element-
dependent parameters separated

• Number of parameters scales favorably 
with the number of elements
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How to Use Automated Training Protocols to 
Fit ML FFs to Solve Realistic Problems
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MTP Training Stages

(2) Generate initial geometries

Batch learning

Active learning

Use basic protocol to generate initial geometries

(1) Choose reference method Choose reference calculator for the system (LCAO-
DFT, plane-wave DFT, DFTB, even other FF)

Compute training data for initial geometries and train an 
MTP

Augment training data by dynamically including new 
atomic environments while running validation MD

(4) MTP tuning (optional) Optimize hyper parameters – non-linear coefficients, 
cutoff radii and number of basis functions

(3) MTP 
Training or
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Batch Learning 

Select specific 
material or interface 

Use Machine Learning to generate a
Force Field called a Moment Tensor Potential (MTP)

Production dynamical 
simulations for simple 

cases

Pre-defined basic training protocols
• Crystals and crystal-like materials
• Interfaces
• Alloys
• Surface processes (molecules)
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Automatic Interface Geometry Generation

Si(100)/GaAs(100) Si(110)/GaAs(100) Si(111)/GaAs(100)

Si(100)/GaAs(110) Si(110)/GaAs(110) Si(111)/GaAs(111)

Si(100)/GaAs(111) Si(110)/GaAs(111) Si(111)/GaAs(111)

+ =
Bulk Si Bulk GaAs
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Active Learning MD recommended:
• Amorphous systems
• Interfaces
• High-temperature
• Surface processes

No computationally 
expensive ab-initio MD 

needed

Initial training dataset is improved on-the-fly by actively adding 
missing training configurations and DFT training data during 
MD, meta-dynamics, force-bias Monte Carlo or NEB simulations

Active Learning 

DFT and FFs 
implemented in the 
same platform
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Example Applications of ML FFs (MTPs) for 
Complex Materials and Interfaces 
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Thermal Transport in Ge-Sb-Te Phase-Change Materials

c-Ge2Sb2Te5 thermal transport simulation using 
reverse non-equilibrium MD and ML-MTP

No Conventional Force Fields Exist for GST Materials

Temperature gradient

kin-plane = 1.44 W / K / m

kout-of-plane = 0.35 W / K /m

Heat sink Heat source

Fast amorphization of GST
Crystalline GST

DFT-MD (2d9h)
Force-Bias-MC 

(1d5h)
MTP (1h)  

Amorphous GST

• Accurate thermal conductivities.
• Fast alternative to expensive simulations 

based on Boltzmann transport equation. 
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Structural Changes under E-field in CBRAM (Ag/a-SiO2)

J. Aeschlimann et al. Solid State Electronics 
199 (2023) 108493

MD-FF simulation with applied 
E-field drives structural changes 
which in turn influence the 
conductance



© 2023 Synopsys, Inc. 17

Interdiffusion at Metal−Chalcogenide Interfaces

S. K. Achar et al., ACS Appl. Mater. Interfaces (2022)
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Automatic Interface Training Tool
Cu/TaN

• Automatic set up of all possible interface 
combination between low index surfaces.

• Different terminations (Ta, N) considered.
• Optimize each interface configuration.
• Apply random displacements of different 

magnitude to sample different energies and 
forces for the optimized interfaces.

• Training errors:

• MD is stable at 300K for an interface manually 
generated in the interface builder.

RMSE Energy/atom 
(eV)

Force (eV/Å) Stress 
(eV/Å^3)

Training 0.0249859393 0.4436314418 0.0484427052

Testing 0.0264453277 0.4638423203 0.0486505346

Separation 
energies are well 
reproduced.
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Diffusion across Ti-Based Amorphous Interfaces

MTP for amorphous interfaces between Ti-based 
materials (4 elements):

Training data consists of:
• Displaced crystal structures of different 

compositions
• Active learning of amoprhous materials of different 

composition.
• No explicit interface configurations in the training 

data.

Training MTP for Aluminum Diffusion in TiN-based Materials
NEB of Aluminum diffusion in c-TiN: 

DFT barrier well 
reproduced, without 
explicitly training to 
diffusion events.
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Structure of Ti / Si / TiSi Interfaces

• Enables simulations of interfaces between Si / Ti 
and crystalline, poly-crystalline, or amorphous TiSi.

• Quicky generate realistic interface configurations, 
e.g. for DFT contact resistance calculations.

• Simulate Si / Ti interface, towards interdiffusion and 
onset of silicidation

Crystalline Si Amorphous TiSi
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Structure of IGZO Materials

Crystal:
• Optimize all crystal structures with DFT and MTP and 

compare lattice constants:
– Max. Deviation 2.5 %, most crystals have below 1% 

deviation in lattice constants.
• Calculate equation-of-state (EOS) with DFT and MTP:

Amorphous:
• Forces scatterplot for melt-quench of am. ZnO, InZnO, 

IGZO with MTP:

Energy RMSE 20 meV / Atom
Forces RMSE 0.35 eV / Ang

 Only slightly larger than training error due to many 
out-of-equilibrium configurations. 

 All crystals very 
well reproduced
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Interfaces between Multiple Layers in 
Magnetic Tunneling Junctions (MTJs) for MRAM Applications
3 different layers with Delta-MTP:
• MgO / FeCo / W:

Fast and robust optimization and MD:

Interface mechanical 
properties accurately 
reproduced 
compared to DFT:A B

A B A B+ +
MTPA MTPB MTPA/B

Delta-MTP:
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Structure of HfO2 / TiN Interface and Glasses

MTP for crystal and amorphous HfO2 with 
excellent reproduction of structural properties:

MTP for Calcium-Aluminum-Silicate glass:

• More accurate than the common conventional 
FFs for these materials
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Structure of Sodium Silicate Glass with a Few Na Atoms

• Large-scale MTP-MDs of (Na2O)2(SiO2)40000, i.e., sodium silicate glass only containing a few Na atoms
• Train MTP by active-learning MDs of (Na2O)2(SiO2)50 (Fig. 1) → MTP-MDs of (Na2O)2(SiO2)40000
• Results: RDFs and ADFs obtained with MTP and FF [1] based MDs are in good agreement (Fig. 2 (a) and (b)).
• Conclusion: Active-learning MDs enable to train MTP applicable to large-scale MDs of glass containing a few 
impurity atoms

Fig.1: Systems of sodium silicate glass:
(a) (Na2O)2(SiO2)50 used (b) (Na2O)2(SiO2)40000 to 
to train MTP by active- which the trained MTP was 
learning MDs applied

Fig. 2: Results of MTP-MD (at T=2500 K)
(a) RDF (Comparison with the results (b) ADF (Comparison with the results  
obtained using the Pedone potential) obtained using the Pedone potential)

[1] A. Pedone et al., Chem. Mater. 19, 3144 (2007).

x1/12000
x1/50000
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Summary
• An integrated Python-based platform combining DFT, force fields and ML 

algorithms extend the applicability of atomistic modeling
– ML potentials can be used for MD, meta-dynamics, phonons, crystal structure prediction
– Well trained ML FFs can even be accurate for reactions (NEB)

• By employing well-crafted protocols, ML FFs can be trained efficiently and 
robustly
– Application-specific generation of small but relevant set of initial training structures
– Active learning for difficult situations like interfaces and amorphous structures

• Demonstrated application examples for complex interfaces and multi-element 
structures
– Advanced features like ZBL correction, dispersion corrections (D3, D4)

https://quantumatk.com
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