logo
QuantumATK
  • Home/
  • NanoLab Guides/
  • Workflows Manual
print feedback
  • Getting started with QuantumATK
    • Installation Guide
      • Access to SolvNet
      • Access to a License Server
      • Linux only: Download and use Synopsys Installer
      • Downloading, Installing and Configuring QuantumATK
        • Downloading QuantumATK
        • Installing QuantumATK
        • Configuring the QuantumATK License
      • System Requirements
      • Using QuantumATK from the command line
      • Troubleshooting
        • Slow Startup on Windows
        • libGL.so: Cannot Open Shared Object File
        • libGLU.so.1: Cannot Open Shared Object File
        • Could Not Find or Load the Qt Platform Plugin “xcb”
        • ATKError: Exceeded Maximum Number of Self-Consistent Iterations
        • Failure to Initialize
        • ImportError: No Module Named
        • Pulay Mixing Inversion Failed. Using Only Last Step
        • Why are so many k-points needed in the transport direction in a device calculation?
        • ATKError: St9bad_alloc
        • Runtime Terminates an Application
        • Killed by Signal 9
        • Not Enough Space to Allocate vblock
        • Can’t Allocate Memory for Array
        • ATKError: Bad Allocation
        • ATKError: Inverse(DZMatrix const&) : Could Not LU Factorize!
        • Cannot Run QuantumATK P-2019.03
        • Network or Nodelocked Licenses
        • License for QuantumATK Parallel Run
        • Basic License Troubleshooting
        • Advanced License Troubleshooting
        • Maintenance, Updates and Support
        • License and QuantumATK Upgrading
        • Updating the License File
        • License Server Cannot Be Started
        • SSH License Server Access
        • Restricting Access to a License Server
    • Introductory Tutorials
      • Geometry Optimization
        • Prerequisites
        • Importing Structures from the NanoLab Database
        • Setting up Geometry Optimization Workflow
        • References
      • Band Structure, Projected Density of States and Effective Mass Calculations
        • Prerequisites
        • Setting up Band Structure Calculation Workflow
        • Analyzing Band Structure Results
        • Restarting to Obtain Projected Density of States
        • Analyzing Projected Density of State Results
        • Calculation of Effective Masses
        • References
      • Optical Property Calculations
        • Prerequisites
        • Setting up an Optical Property Calculation Workflow
        • Analyzing Results
        • Outlook
        • References
      • Molecular Dynamics Simulations for Generating Amorphous Structures
        • Prerequisites
        • Setting-Up Molecular Dynamics Simulations
        • Analyzing Molecular Dynamics Simulations
        • References
      • NEGF Simulations of Electron Transport in Devices
        • Prerequisites
        • Building Si p-n Junction Device
        • Setting up Electron Transport Simulations for the Si p-n Junction at 0 V Bias
        • Analyzing Results at 0 V Bias
        • Setting up Electron Transport Simulations for the Si p-n Junction at Finite Bias
        • Analyzing Results at Finite Bias
        • Summary and Outlook
        • References
    • Feature List
    • Referencing QuantumATK
  • NanoLab Guides
    • Overview of NanoLab
      • Typical workflow
      • Create atomistic structure
      • Set up calculation
      • Run a job
      • Analyze results
      • What’s next
    • Projects in NanoLab
    • Organize your data in the Nanolab data view
      • The Nanolab Data View
      • 1. The File Browser
      • 2. The Search Field
        • The advanced SQL search
        • The Query Builder
      • 3. The Data Table
        • The Quantum ID (qid)
        • Unpack
        • Analyzers and Preferences
      • 4. The Data Preview
        • The Keywords
      • 5. The Data Filters
      • 6. The Data Sources
        • Data Inspectors
    • Builder Manual
      • Introduction
        • Layout and basic operations
      • Importing, adding, and exporting structures
        • Adding an already existing structure
        • Creating a new structure
        • Saving and exporting structures
        • Sending the structure to other QuantumATK tools
      • Mouse and key operations
        • Controlling the 3D view
        • Selection
        • Deleting atoms
        • Undo
      • Using the Move Tool
        • Selection control
        • Translation
        • Advanced Move
      • Overview of built-in Builder plugins
        • Builder Toolbar plugins
        • Builder Panelbar plugins
        • Custom builder plugins
        • Supported file formats for import and export
        • Third-party plugins
      • Managing plugins using the AddOn Manager
    • Workflows Manual
      • Introduction to the Workflow Builder
        • What is the Workflow Builder?
        • The Workflow Builder overview
        • What is a workflow block and how to edit it
        • Creating a simple workflow
        • Re-running a workflow
        • Workflow with multiple branches
        • Workflow with multiple configurations
        • Block of blocks
        • Common operations in the Workflow Builder
      • Using Tables in the Workflow Builder
        • How to collect data in a table
        • How to collect data in a table using an Iteration block
        • How to extract data from a table using a TableIteration block
      • Introduction to Array Jobs
        • How to build an array script in the Workflow Builder
        • How to submit an array script
    • Jobs manual
      • Job Manager for local execution of QuantumATK scripts
        • Execute QuantumATK simulations via the Job Manager
        • Serial execution
        • Threading
        • MPI parallelization
        • Adding Computers
      • Job Manager for remote execution of QuantumATK scripts
        • A single remote machine
        • Custom job settings
        • Debugging
        • Adding several remote machines
    • Plots
      • Plot Gallery
        • Bars
        • Contour
        • Density
        • Density For Weighted Lines
        • Filled Area
        • Line And Annotations
        • Line With Fit
        • Linegroup
        • Multiple Axes
        • Rolling Average
        • Scatter And Bars
        • Transformed Line
        • Working with Plots in NanoLab
    • Manage 3D View and Select Atoms
      • Rotations
      • Reset View
      • Zoom
      • Drag
      • Camera and View Planes
      • Selections
    • Importing and exporting files
      • Import/Export files in QuantumATK
        • Stash Items
        • Add from Database
        • Add from Files
        • Add from Plugins
        • Save and Export Structures
      • Export XYZ, CIF, CAR, VASP Files in QuantumATK
        • Built-in export filters
        • Exporting from scripts
      • Import XYZ, CIF, CAR, VASP Files in QuantumATK
        • Drag and Drop
        • Importing structures in a script
    • Molecular builder
      • Ethanol molecule
      • Caffeine molecule
      • Going further
      • Export the Stash Configuration file
    • Using the Crystal Builder
      • Introduction
      • Crystal structure of black phosphorus
      • Phosphorene and its bandstructure
        • Bandstructure
      • References
    • The Builder Console
      • Special variables
        • The active configuration
        • The selected atoms
        • The active camera
        • The Builder Stash
      • Console Snippets
      • The console in Builder plugin development
      • Questions
    • AddOns
      • Creating AddOns
      • Disabling or Uninstalling AddOns
      • Getting Addons
      • Installing AddOn
        • Install AddOns as limited access users
        • Installing AddOns on the local system
      • Failing AddOn Installation
      • AddOns Location
      • Updating AddOns
      • What Is an AddOn
      • Check Installed AddOns
  • Tutorials
    • New or Updated
      • Training and Finetuning of MACE models
        • Training a MACE model from scratch
        • Naive Finetuning of foundation MACE models
        • Multihead Finetuning of foundation MACE models
        • Small study with additional models trained from scratch
        • Validation of trained models
        • Impact of important parameters
        • General remarks
        • Loading custom MACE models into QuantumATK
        • Summary
        • References
      • 2D Database and potentials
        • Importing a Structure from the 2D Materials Database
        • Creating and Setting a Calculator from a 2D Potential Set
        • Phonon Bandstructure calculation
        • References
      • Moment Tensor Potential (MTP) Training for Crystal and Amorphous Structures
        • Prerequisites
        • Overview of the MTP Training Workflow
        • Crystal Training Data
        • Amorphous Active Learning
        • Final MTP Fitting
        • Submitting the MTP Training Calculation
        • Analyzing MTP Training Results
        • MTP Validation for Crystals
        • MTP Validation for Amorphous
        • Summary and Outlook
        • References
      • MRAM workflow in QuantumATK: Study of STT-MRAM free layer stability
        • Video
        • Introduction
        • Workflow for calculating the free layer stability in a STT-MRAM MTJ structure
        • Vampire
        • References
      • Generating A Magnetoresistive RAM (MRAM) Stack using the MRAM-Builder
        • Introduction
        • Workflow to generate the MgO-FeCo-MgO MRAM structure
      • Generating A High-k Metal Gate Stack Using the HKMG-Builder
        • Introduction
        • Workflow
      • How to select the right calculator
        • The Calculator types
        • The DFT Calculators (LCAO and Plane Wave)
        • The Semi Empirical Calculator
        • The Force Field Calculator
      • Using Thermochemistry Analyzer to Compare Chemical Reactions
        • Background
        • Getting started
        • Understanding the Thermochemistry Analyzer GUI
        • Example: Temperature Window for Thermal Atomic Layer Etching of HfO2 and ZrO2
        • General Uses
      • Electronic Properties of Phase Change Material Ge2Sb2Te5
        • Geometry
        • Bandgap Calculation
        • Lattice Parameters
        • Cohesive Energies
        • Neutral Vacancy Formation Energies
        • Total DOS With and Without Ge Vacancy
      • STM simulations of tunneling anisotropic magneto resistance (TAMR)
        • Introduction
        • Setting up the 2LFe/W(110) structure
        • Local Density of States calculations
        • Analyzing the results
        • Co adatom on 2LFe/W(110)
        • COSMICS project
        • References
      • Bulk Magnetic Anisotropy Energy
        • Introduction
        • Theory
        • MAE of FePt
        • TotalEnergy calculations
        • Convergence of results
        • COSMICS project
      • Magnetic Anisotropy Energy of Fe-MgO-Fe MTJ structure
        • Introduction
        • Fe-MgO-Fe MTJ structure
        • MagneticAnisotropyEnergy calculation
        • What causes the PMA?
        • COSMICS project
      • Heisenberg exchange coupling of iron and cobalt
        • Introduction
        • Theory
        • Setting up calculations
        • Analyzing the results
        • COSMICS project
        • References
      • Building an model of an epoxy thermoset material
        • Theory
        • Building the thermoset model
        • Analyzing the Thermoset Reaction
        • Conclusions
      • Analyzing the thermo-mechanical properties of a polymer material
        • Glass Transition Temperature
        • Young’s Modulus and Poisson Ratio
        • Conclusions
      • Generating A Moment Tensor Potential for HfO2 Using Active Learning
        • Background
        • Getting Started
        • Workflow
        • Step 1: Prepare Initial Reference Configurations
        • Step 2: Compute Reference Data and Setup Active Learning
        • Step 3: Find an MTP with Lowest Error
        • Validation MD Simulation
        • References
        • FAQ Section
      • Simulating Si Deposition using Silane
        • Background
        • Getting started
        • Step 1: Reference Calculations
        • Step 2: Adsorption and Dissociation of SiH4
        • Step 3: Formation and Desorption of H2
        • Conclusions
        • References
    • Semiconductors
      • Phonon-limited mobility in graphene using the Boltzmann transport equation
        • Geometry and electronic structure of graphene
        • Phonons in Graphene
        • Mobility of graphene
        • Convergence of q- and k-point sampling
        • Theory section
        • References
      • Effective mass of electrons in silicon
        • Introduction
        • Background
        • Set up the calculation
        • Analyze the results
        • Going further
        • References
      • Spin-orbit splitting of semiconductor band structures
        • Relavistic effects in Kohn-Sham DFT
        • Silicon band splitting with ATK-DFT
        • SO+MGGA band gap
        • GaAs band structure with ATK-SE and SO coupling
        • References
      • Silicon p-n junction
        • Silicon bulk: Slater-Koster vs DFT-MGGA
        • Silicon device
        • Analyzing the results
        • References
      • Optical Properties of Silicon
        • Introduction
        • Electronic structure and optical properties of silicon
        • References
      • NiSi2–Si interface
        • Create the NiSi2/Si device
        • Set-up the calculation for the undoped device
        • Dope the device
        • Analysis of the results
        • Finite-bias calculations
        • References
      • Bi2Se3 topological insulator
        • Build the Bi2Se3 crystal
        • Bi2Se3 bulk band structure
        • Bi2Se3 surface: Spin-orbit band structure
        • DOS analysis: Dirac cone finger print
        • Penetration depth of surface states
        • Fermi surface and spin directions
        • Topological Invariants
        • References
      • Effective band structure of random alloy InGaAs
        • Methodology
        • Band structures of InAs
        • In0.53Ga0.47As random alloy
        • Finite broadening
        • Final comments
        • References
      • Complex bandstructure of Si(100)
        • Background
        • Si(100) surface
        • Complex bandstructure calculation
        • Analysing the results
        • 3D and 2D visualizations
        • References
      • InAs p-i-n junction
        • Setting up the device geometry
        • Running the calculations
        • Defining the work function of the metal gate
        • Performing a gate scan
        • References
      • Inelastic current in a silicon p-n junction
        • Creating the silicon p-n junction
        • Transmission calculation without electron-phonon interactions
        • Transmission calculation with electron-phonon interactions
        • Speeding up the calculations
        • References
      • Elastic scattering, mean free path, mobility: Impurity scattering in a silicon nanowire
        • Introduction
        • Defected silicon nanowires
        • Elastic scattering mean free path
        • Fermi levels in doped nanowires
        • Doping dependent mobility
        • Summary and discussion
        • Appendix: Building the nanowires
        • References
      • Virtual Crystal Approximation for InGaAs random alloy simulations
        • Introduction
        • Setting up the VCA calculations for InxGa1-xAs
        • Analyzing the results for VCA with InxGa1-xAs
        • Calculating effective masses
        • Summary and discussion
        • References
      • DFT-1/2 and DFT-PPS density functional methods for electronic structure calculations
        • DFT-1/2 methods
        • DFT-PPS method
        • References
      • Electrical characteristics of devices using the IVCharacteristics study object
        • Prerequisites
        • Calculation and analysis of the \(\mathrm{I_{ds}-V_{gs}}\) curve for the FET on-state
        • Extending the range of the \(\mathrm{I_{ds}-V_{gs}}\) curve to the FET off-state
        • Analysis of the \(\mathrm{I_{ds}-V_{gs}}\) curve in the subthreshold region
        • Calculating the drain-induced barrier lowering
        • References
      • Formation energies and transition levels of charged defects
        • Procedure for calculating the formation energy
        • Setting up the calculation
        • Analyzing the results
        • Discussion and summary
        • Appendix
        • References
      • Introduction
      • Methods
        • HSE
        • Nomenclature
        • Pseudopotential Projector-Shift
      • Silicon
        • Summary
        • Convergence
        • Timing
        • Results
        • Appendix
        • References
      • Germanium
        • Summary
        • Convergence
        • Timing
        • Results
        • Appendix
      • Si0.5Ge0.5
        • Summary
        • Convergence
        • Timing
        • Results
        • Appendix
        • References
    • Batteries & Energy Storage
      • Li-air battery interface
        • Li2O2 bulk and surface structures
        • Li2CO3 bulk and surface structures
        • The Li2O2/Li2CO3 interface
        • References
      • Li-ion diffusion in LiFePO4 for battery applications
        • Import LiFePO4 bulk structure
        • Optimize LiFePO4 lattice parameters
        • Create the Li\(_{1-x}\)FePO4 structures
        • Optimize initial and final configurations
        • Create initial NEB trajectories
        • Optimize Li diffusion path
        • Calculate the reaction rates using harmonic transition state theory
        • References
      • Open-circuit voltage profile of a Li-S battery: ReaxFF molecular dynamics
        • Amorphous Li0.4S compound
        • Simulated annealing
        • Open-circuit voltage
        • Full open-circuit voltage profile
        • Radial distribution functions
        • References
      • Photocurrent in a silicon p-n junction
        • Device ground state
        • Photocurrent
        • References
    • Complex Interfaces
      • Building an interface between Ag(100) and Au(111)
        • Import silver and gold crystals
        • Building the Ag(100) and Au(111) crystals
        • Building the interface
        • Building the device configuration
      • Advanced device relaxation - manual workflow
        • Introduction
        • Preparations
        • Electrode relaxation
        • Central region relaxation
        • 1DMIN optimization of the interface using 2-probe calculations
      • Relaxation of devices using the OptimizeDeviceConfiguration study object
        • Introduction
        • Unrelaxed Ag(100)|Ag(111) device
        • Set up and run the device geometry optimization
        • Relaxed device structures
        • Appendix
      • Atomic-scale capacitance
        • Build the parallel plate capacitor
        • Calculations
        • Analysis
        • Bias-dependent capacitance
        • Dielectric spacer material
      • Graphene–Nickel interface
        • Creating the structure
        • More configurations
      • Building a Si-Si3N4 Interface
        • Preparations: Two crystals
        • Building the interface
        • Final adjustment
        • Doubling down: Buried layer model
        • Interface as a device model
      • NiSi2–Si interface
        • Create the NiSi2/Si device
        • Set-up the calculation for the undoped device
        • Dope the device
        • Analysis of the results
        • Finite-bias calculations
        • References
      • Determination of low strain interfaces via geometric matching
        • Method description
        • Input and output description
        • Example 1: Lattice match between two bulk systems
        • Example 2: Lattice match between a bulk system with a predefined surface
        • References
      • Generating A High-k Metal Gate Stack Using the HKMG-Builder
        • Introduction
        • Workflow
      • Generating A Magnetoresistive RAM (MRAM) Stack using the MRAM-Builder
        • Introduction
        • Workflow to generate the MgO-FeCo-MgO MRAM structure
      • Modeling metal–semiconductor contacts: The Ag–Si interface
        • Creating the device
        • Projected local density of states
        • Finite-bias calculations
        • Note on the variation of the current
        • References
      • Resistivity calculations using the MD-Landauer method
        • 1. Theory and numerical procedure
        • 2. Calculation setup
        • 3. Data analysis
        • References
      • Electron transport calculations with electron-phonon coupling included via the special thermal displacement method - STD-Landauer
        • Building the device
        • Calculations
        • Analysis and discussion
        • References
    • 1D Nanostructures
      • Transport in graphene nanoribbons
        • Introduction
        • Band structure of 2D graphene
        • Band structure of an armchair ribbon
        • Transport properties of a zigzag nanoribbon
      • Transmission spectrum of a spin-polarized atomic chain
        • Building the 1D carbon chain
        • Spin-parallel transmission spectrum
        • Spin anti-parallel transmission spectrum
      • Introduction to noncollinear spin
        • From collinear to noncollinear spin
        • Getting started
        • Spin rotation of 120°
        • Analysis
        • Spin-orbit interactions
      • Carbon Nanotube Junctions
        • Setting up the geometry
      • Capping a carbon nanotube
        • Build an extended (5,5) carbon nanotube
        • Cut the fullerene in half
        • Capping the tube
        • Finalizing the geometry
      • Simple carbon nanotube device
        • Build and geometry optimize a short CNT
        • CNT device configuration
      • Thermoelectric effects in a CNT with isotope doping
        • CNT device with tags for 14C doping
        • Phonon transmission
        • Electron transmission
        • Thermoelectric transport properties
        • References
      • Graphene nanoribbon device: Electric properties
        • Electron transmission spectrum
        • Effect of the Gate Potential
        • I–V characteristics
        • When is the linear response approximation valid?
        • Further analysis with ATK-SE
        • Temperature dependent conductance
        • Comparison to results for a longer device
        • References
      • Silicon nanowire field-effect transistor
        • Introduction
        • Band structure of a Si(100) nanowire
        • Setting up and running the calculations
        • Si(100) nanowire FET device
        • Zero gate voltage calculation
      • Exploring Graphene
        • Build a graphene sheet
        • Build a CNT
        • Transmission spectrum of a GNR
        • Twisted nanoribbon
        • Möbius nanoribbon
        • Buckling a graphene sheet
      • Elastic scattering, mean free path, mobility: Impurity scattering in a silicon nanowire
        • Introduction
        • Defected silicon nanowires
        • Elastic scattering mean free path
        • Fermi levels in doped nanowires
        • Doping dependent mobility
        • Summary and discussion
        • Appendix: Building the nanowires
        • References
    • 2D Materials
      • Meta-GGA and 2D confined InAs
        • TB09 meta-GGA
        • Bulk InAs band structure with TB09 meta-GGA
        • Setting up and passivating an InAs slab
        • Band structure with default hydrogen atoms
        • Analyzing the results
        • Passivation using pseudo-hydrogen
        • Results
        • Passivation using compensation charges
        • Results
        • Non-parabolicity in confined structures
        • Nanowire band structure
        • References
      • Opening a band gap in silicene and bilayer graphene with an electric field
        • Bilayer graphene
        • Silicene
        • References
        • More reading
      • Commensurate supercells for rotated graphene layers
        • Additional rotated structures
        • References
      • Spin-dependent Bloch states in graphene nanoribbons
        • Band structure of a zigzag nanoribbon
        • Bloch states
        • Introducing spin
        • Electron density and Mulliken populations
        • References
      • Exploring Graphene
        • Build a graphene sheet
        • Build a CNT
        • Transmission spectrum of a GNR
        • Twisted nanoribbon
        • Möbius nanoribbon
        • Buckling a graphene sheet
      • 2D Database and potentials
        • Importing a Structure from the 2D Materials Database
        • Creating and Setting a Calculator from a 2D Potential Set
        • Phonon Bandstructure calculation
        • References
    • Phonons & Thermal Transport
      • Calculating and using Dynamical Matrix
        • Prerequisites
        • Create the Workflow
        • LCAOCalculator Settings
        • Lattice optimization Settings
        • Dynamical matrix Settings
        • Running the calculation
        • Analyzing the results
        • Speeding up the calculation with ForceFields
      • Vibrational modes and Vibration Visualizer
        • MoS2 monolayer
        • Nanophononic metamaterials
      • Phonons, Bandstructure and Thermoelectrics
        • Introduction
        • Phonon Bandstructure of a Graphene Nanoribbon
        • Analyzing the Results
        • Algorithmic Details of the Phonon Calculator
        • Calculating Electrical and Heat Transport for a Graphene Nanoribbon
      • Phonon-limited mobility in graphene using the Boltzmann transport equation
        • Geometry and electronic structure of graphene
        • Phonons in Graphene
        • Mobility of graphene
        • Convergence of q- and k-point sampling
        • Theory section
        • References
      • Thermoelectric effects in a CNT with isotope doping
        • CNT device with tags for 14C doping
        • Phonon transmission
        • Electron transmission
        • Thermoelectric transport properties
        • References
      • Inelastic Electron Spectroscopy of an H2 molecule placed between 1D Au chains
        • Introduction
        • Device setup
        • Calculation of IETS
        • Analysis
        • References
      • Using Thermochemistry Analyzer to Compare Chemical Reactions
        • Background
        • Getting started
        • Understanding the Thermochemistry Analyzer GUI
        • Example: Temperature Window for Thermal Atomic Layer Etching of HfO2 and ZrO2
        • General Uses
      • Interfacial thermal conductance
        • Introduction
        • Reverse non-equilibrium molecular dynamics (RNEMD)
        • Non-equilibrium Green’s function method
        • References
    • Molecular Dynamics
      • How to Setup Basic Molecular Dynamics Simulations
        • Pre-requisites
        • NVE Simulations
        • NVT Simulations
        • NPT Simulations
        • Conclusion
      • Simulating Thin Film Growth via Vapor Deposition
        • Introduction
        • Simulation Strategies
        • Preparing the System
        • Setting up the Deposition Simulation
        • Running the Simulation
        • General Remarks
      • Simulating Si Deposition using Silane
        • Background
        • Getting started
        • Step 1: Reference Calculations
        • Step 2: Adsorption and Dissociation of SiH4
        • Step 3: Formation and Desorption of H2
        • Conclusions
        • References
      • Simulating Ion Bombardment on Graphene Sheets
        • Setting up the Graphene Sheet:
        • Adding a Bombardment Atom
        • Setting up the Simulation
        • Modifying the Script
        • References
      • Uniaxial and Biaxial Stress in Silicon
        • Introduction
        • Uniaxial Stress
        • Biaxial Stress
      • Adding, Combining, and Modifying Classical Potentials
        • Introduction
        • Adding a New Classical Potential from Scratch
        • A Potential for Amorphous Oxides
        • Combining a Tersoff and a Lennard-Jones Potential
        • Intra- and Inter-Layer Cohesion in MoS2
      • Generating Amorphous Structures
        • Introduction
        • Amorphous Structure Generation with Classical MD Simulations
        • Refining Amorphous Structures
        • Creating Crystal/Amorphous Interfaces
        • Further Examples
      • Young’s modulus of a CNT with a defect
        • CNT bulk configuration
        • Configuring the MD simulation
        • Adding Python hooks
        • Computing Young’s modulus
        • Visualize and analyse the results
        • References
      • Interfacial thermal conductance
        • Introduction
        • Reverse non-equilibrium molecular dynamics (RNEMD)
        • Non-equilibrium Green’s function method
        • References
      • Diffusion in Liquids from Molecular Dynamics Simulations
        • Theory
        • Computational Procedure
        • Analysis
      • Simulating a creep experiment of polycrystalline copper
        • Installing the polycrystal builder plugin
        • Building the polycrystalline cell
        • Analyzing the grain structure
        • Setting up the creep simulation
        • Running the simulation
        • Analyzing the results
        • Outlook
        • References
      • Metadynamics Simulation of Cu Vacancy Diffusion on Cu(111) - Using PLUMED
        • Introduction
        • Theoretical Background
        • Metadynamics Simulation of Cu Vacancy on Cu(111)
        • References
      • Open-circuit voltage profile of a Li-S battery: ReaxFF molecular dynamics
        • Amorphous Li0.4S compound
        • Simulated annealing
        • Open-circuit voltage
        • Full open-circuit voltage profile
        • Radial distribution functions
        • References
      • Viscosity in liquids from molecular dynamics simulations
        • Theory
        • Computational procedure
        • Analyzing the results
        • Extending the results
      • Building an model of an epoxy thermoset material
        • Theory
        • Building the thermoset model
        • Analyzing the Thermoset Reaction
        • Conclusions
      • Analyzing the thermo-mechanical properties of a polymer material
        • Glass Transition Temperature
        • Young’s Modulus and Poisson Ratio
        • Conclusions
      • Moment Tensor Potential (MTP) Training for Crystal and Amorphous Structures
        • Prerequisites
        • Overview of the MTP Training Workflow
        • Crystal Training Data
        • Amorphous Active Learning
        • Final MTP Fitting
        • Submitting the MTP Training Calculation
        • Analyzing MTP Training Results
        • MTP Validation for Crystals
        • MTP Validation for Amorphous
        • Summary and Outlook
        • References
      • Generating A Moment Tensor Potential for HfO2 Using Active Learning
        • Background
        • Getting Started
        • Workflow
        • Step 1: Prepare Initial Reference Configurations
        • Step 2: Compute Reference Data and Setup Active Learning
        • Step 3: Find an MTP with Lowest Error
        • Validation MD Simulation
        • References
        • FAQ Section
      • Training and Finetuning of MACE models
        • Training a MACE model from scratch
        • Naive Finetuning of foundation MACE models
        • Multihead Finetuning of foundation MACE models
        • Small study with additional models trained from scratch
        • Validation of trained models
        • Impact of important parameters
        • General remarks
        • Loading custom MACE models into QuantumATK
        • Summary
        • References
    • Molecular Electronics
      • Building molecule–surface systems: Benzene on Au(111)
        • Summary of workflow
        • Detailed instructions
        • References
      • Building a molecular junction
        • Benzene to DTB: Building the molecule
        • Cleaving gold into two surfaces
        • Combining the molecule and the surfaces
        • Converting the central region to a device configuration
        • References
      • Molecular Device
        • Zero-bias calculation
        • Analysis of the zero-bias results
        • I-V characteristics
        • References
      • Inelastic Electron Spectroscopy of an H2 molecule placed between 1D Au chains
        • Introduction
        • Device setup
        • Calculation of IETS
        • Analysis
        • References
    • Spintronics
      • Spin Transfer Torque
        • Introduction
        • Getting Started
        • Calculate the STT
        • Angle Dependence
        • References
      • Transmission spectrum of a spin-polarized atomic chain
        • Building the 1D carbon chain
        • Spin-parallel transmission spectrum
        • Spin anti-parallel transmission spectrum
      • Introduction to noncollinear spin
        • From collinear to noncollinear spin
        • Getting started
        • Spin rotation of 120°
        • Analysis
        • Spin-orbit interactions
      • Spin transport in magnetic tunnel junctions
        • Introduction
        • Getting started
        • Parallel spin
        • Anti-parallel spin
        • Tunneling magnetoresistance
        • Adaptive k-point grid
        • Spin-transfer torque
        • Relaxing the device central region
        • References
      • Relativistic effects in bulk gold
        • GGA band structure
        • Spin-orbit GGA band structure
        • References
      • Spin-orbit splitting of semiconductor band structures
        • Relavistic effects in Kohn-Sham DFT
        • Silicon band splitting with ATK-DFT
        • SO+MGGA band gap
        • GaAs band structure with ATK-SE and SO coupling
        • References
      • Bi2Se3 topological insulator
        • Build the Bi2Se3 crystal
        • Bi2Se3 bulk band structure
        • Bi2Se3 surface: Spin-orbit band structure
        • DOS analysis: Dirac cone finger print
        • Penetration depth of surface states
        • Fermi surface and spin directions
        • Topological Invariants
        • References
      • Noncollinear calculations for metallic nanowires
        • Building the device
        • Setting up the collinear calculation and analyzing the results
        • Setting up the noncollinear calculation
        • Analyzing the results
        • Including spin-orbit coupling in noncollinear calculations
        • References
      • Electronic structure of NiO with DFT+U
        • Introduction
        • The electronic structure of NiO calculated with DFT
        • DFT+U calculation for the NiO crystal
        • References
      • Bulk Magnetic Anisotropy Energy
        • Introduction
        • Theory
        • MAE of FePt
        • TotalEnergy calculations
        • Convergence of results
        • COSMICS project
      • Magnetic Anisotropy Energy of Fe-MgO-Fe MTJ structure
        • Introduction
        • Fe-MgO-Fe MTJ structure
        • MagneticAnisotropyEnergy calculation
        • What causes the PMA?
        • COSMICS project
      • STM simulations of tunneling anisotropic magneto resistance (TAMR)
        • Introduction
        • Setting up the 2LFe/W(110) structure
        • Local Density of States calculations
        • Analyzing the results
        • Co adatom on 2LFe/W(110)
        • COSMICS project
        • References
      • Heisenberg exchange coupling of iron and cobalt
        • Introduction
        • Theory
        • Setting up calculations
        • Analyzing the results
        • COSMICS project
        • References
      • Generating A Magnetoresistive RAM (MRAM) Stack using the MRAM-Builder
        • Introduction
        • Workflow to generate the MgO-FeCo-MgO MRAM structure
      • MRAM workflow in QuantumATK: Study of STT-MRAM free layer stability
        • Video
        • Introduction
        • Workflow for calculating the free layer stability in a STT-MRAM MTJ structure
        • Vampire
        • References
    • Materials, Surfaces and Chemistry
      • Polymer Builder
        • Procedure of the Polymer Builder
      • Green’s function surface calculations
        • Atomistic models of a surface
        • NEGF calculation with a single electrode
        • Work function of Ag(100)
        • Convergence wrt. metal layers
      • Polarization
        • Introduction
        • Modern theory of polarization
        • Spontaneous polarization of ferroelectric BaTiO3
        • References
      • Vibrational modes and Vibration Visualizer
        • MoS2 monolayer
        • Nanophononic metamaterials
      • Visualize the LUMO state of a water molecule
        • Building the molecule
        • Calculating the LUMO state
      • How to calculate reaction barriers using the Nudged Elastic Band (NEB) method
        • Create the initial and final states for the NEB
        • Set up and run the NEB calculations
        • Analyze the results
        • Summary
        • References
      • Ammonia inversion reaction barrier using DFTB and NEB
        • Setting up the NEB object
        • Performing the NEB simulation
        • Analyzing the NEB simulation
        • A recipe for faster calculations
      • Reconstruction of the Si (100) surface - a geometry optimization study with QuantumATK
        • Introduction
        • Building the geometry
        • Setting up the calculation
        • Results
        • Summary
      • Computing the work function of a metal surface using ghost atoms
        • Why use ghost atoms?
        • Setting up the geometry
        • Defining the parameters of the calculation
        • Calculation and analysis
        • Comments
      • Tuning the work function of silver by deposition of ultrathin oxide layers
        • Ag(100) and MgO(100) surfaces
        • Ag/MgO interface
        • DFT calculations
        • Analyzing the results
        • 1D Projector plugin
        • References
      • Calculating Reaction Rates using Harmonic Transition State Theory
        • Introduction
        • Modeling Pt Adatom Diffusion on Pt(100)
        • Calculating the Rate for Multiple Elementary Reaction Steps
        • References
      • Simulating Si Deposition using Silane
        • Background
        • Getting started
        • Step 1: Reference Calculations
        • Step 2: Adsorption and Dissociation of SiH4
        • Step 3: Formation and Desorption of H2
        • Conclusions
        • References
      • Calculation of Formation Energies
        • Formation energy calculations (or cohesive energy)
        • Cohesive energy of a bulk system
        • Defect formation energy calculations
        • References
      • Uniaxial and Biaxial Stress in Silicon
        • Introduction
        • Uniaxial Stress
        • Biaxial Stress
      • Elastic constants
        • Methodology
        • Calculating elastic constants using classical potentials
        • Calculate elastic constants using DFT
      • Young’s modulus of a CNT with a defect
        • CNT bulk configuration
        • Configuring the MD simulation
        • Adding Python hooks
        • Computing Young’s modulus
        • Visualize and analyse the results
        • References
      • Relativistic effects in bulk gold
        • GGA band structure
        • Spin-orbit GGA band structure
        • References
      • Geometry optimization: CO/Pd(100)
        • Bulk palladium
        • Build the Pd(100) surface and relax it
        • Relax the CO/Pd(100) system
        • Relax the CO molecule
        • Adsorption energy
      • Modeling Vacancy Diffusion in Si0.5 Ge0.5 with AKMC
        • Obtaining an Initial Structure
        • Running the AKMC Simulation
        • Conclusion
      • Computing the piezoelectric tensor for AlN
        • Introduction
        • Computing the piezoelectric tensor
        • Alternative way of calculating the piezoelectric coefficient \({e}_{33}\)
        • Computing the Born effective charge
        • References
      • Formation energies of charged defects - manual workflow
        • Procedure for calculating the formation energy
        • Neutral As vacancy in GaAs
        • Charged As vacancies in GaAs
        • Appendix
        • References
      • Boron diffusion in bulk silicon
        • Creating the B-doped Si crystal
        • Running the AKMC simulation
      • Adaptive Kinetic Monte Carlo Simulation of Pt Island Ripening
        • Introduction
        • Creating the initial configuration
        • Setting up the AKMC Simulation
        • Running the Simulation
        • Analyzing the AKMC Simulation
        • Conclusion
        • References
      • Adaptive Kinetic Monte Carlo Simulation of Pt on Pt(100)
        • Introduction
        • The AKMC method
        • Creating the initial configuration
        • Creating the AKMC script
        • Analyzing the results
        • Conclusion
        • References
      • Crystal Structure Prediction Scripter: Phases of TiO2
        • Setting up the calculation
        • Running the calculations and analyzing results
        • References
      • Electronic structure of NiO with DFT+U
        • Introduction
        • The electronic structure of NiO calculated with DFT
        • DFT+U calculation for the NiO crystal
        • References
      • DFT-D and basis-set superposition error
        • The DFT-D dispersion corrections
        • D2 correction
        • D3 correction
        • BSSE and the counterpoise correction
        • Set-up the graphene bilayer system
        • Geometry optimization without counterpoise correction
        • Including the counterpoise correction
        • Including the D2 dispersion correction
        • Including the D3 dispersion correction
        • Summary of the results
        • References
      • Formation energies and transition levels of charged defects
        • Procedure for calculating the formation energy
        • Setting up the calculation
        • Analyzing the results
        • Discussion and summary
        • Appendix
        • References
      • Using Thermochemistry Analyzer to Compare Chemical Reactions
        • Background
        • Getting started
        • Understanding the Thermochemistry Analyzer GUI
        • Example: Temperature Window for Thermal Atomic Layer Etching of HfO2 and ZrO2
        • General Uses
      • Electronic Properties of Phase Change Material Ge2Sb2Te5
        • Geometry
        • Bandgap Calculation
        • Lattice Parameters
        • Cohesive Energies
        • Neutral Vacancy Formation Energies
        • Total DOS With and Without Ge Vacancy
    • Miscellaneous
      • The DFTB model in ATK-SE
        • Installing DFTB parameters
        • Testing the installation
        • Spin polarized calculations with DFTB
      • Accessing QuantumATK internal variables
        • Internal matrices accessible in QuantumATK
        • Multi-terminal conduction
        • Transmission projection
        • AC conductance
        • References
      • Slater-Koster tight-binding models in ATK-SE
        • Introduction
        • Onsite matrix element
        • Offsite matrix elements
        • Defining the full Slater-Koster table
        • Silicon band structure
        • Adding hydrogen
        • Band gaps of passivated silicon nanowires
        • References
      • Linear response current – how to compute it, and why it is often not a good idea
      • Make Movies from QuantumATK Trajectory Files
        • Creating Animated GIF
        • Rotation Animator
        • Movie from Trajectory Files
      • Converting lattices: Rhombohedral to hexagonal and back
        • Conversion between hP and hR representations
        • Converting hP supercell to hR primitive cell
        • Crystal classifications
        • References
      • Reusing electrodes in device calculations
        • Separate scripts for electrodes and device
      • Initialize from a converged state
        • Introduction
        • Examples
      • Restarting a stopped calculation
        • Saving the checkpoint file
        • Restarting the calculation from the checkpoint file
      • Compute quantities from converged simulations
      • POV-Ray images from QuantumATK
        • Elementary functionalities through an example
        • Examining the .pov file
        • Exporting pictures with POV-Ray
      • Generating A High-k Metal Gate Stack Using the HKMG-Builder
        • Introduction
        • Workflow
      • Generating A Magnetoresistive RAM (MRAM) Stack using the MRAM-Builder
        • Introduction
        • Workflow to generate the MgO-FeCo-MgO MRAM structure
      • How to select the right calculator
        • The Calculator types
        • The DFT Calculators (LCAO and Plane Wave)
        • The Semi Empirical Calculator
        • The Force Field Calculator
      • Transport calculations with QuantumATK
        • Introduction
        • Geometry for transport calculations
        • Getting started
        • Convergence of electrode parameters
        • Zero-bias analysis
        • Finite-bias calculations
        • Summary
      • Calculate the band structure of a crystal
        • Start QuantumATK and create a new project
        • Import the Silicon structure from the Database and send it to the Scripter
        • Set up the calculation and analyse the band structure
      • Phonons, Bandstructure and Thermoelectrics
        • Introduction
        • Phonon Bandstructure of a Graphene Nanoribbon
        • Analyzing the Results
        • Algorithmic Details of the Phonon Calculator
        • Calculating Electrical and Heat Transport for a Graphene Nanoribbon
      • Introducing the QuantumATK plane-wave DFT calculator
        • Introduction
      • How to calculate reaction barriers using the Nudged Elastic Band (NEB) method
        • Create the initial and final states for the NEB
        • Set up and run the NEB calculations
        • Analyze the results
        • Summary
        • References
      • Carbon Nanotube Junctions
        • Setting up the geometry
      • Capping a carbon nanotube
        • Build an extended (5,5) carbon nanotube
        • Cut the fullerene in half
        • Capping the tube
        • Finalizing the geometry
      • Simple carbon nanotube device
        • Build and geometry optimize a short CNT
        • CNT device configuration
      • Building a Si-Si3N4 Interface
        • Preparations: Two crystals
        • Building the interface
        • Final adjustment
        • Doubling down: Buried layer model
        • Interface as a device model
      • Build a graphene nanoribbon transistor
        • Small nanoribbon transistor
        • A longer nanoribbon transistor
      • Commensurate supercells for rotated graphene layers
        • Additional rotated structures
        • References
      • Nanosheet with a hole
      • MoS2 Nanotubes
      • Graphene–Nickel interface
        • Creating the structure
        • More configurations
      • Stone–Wales Defects in Nanotubes
        • Creating the defect and wrapping the tube
        • Optimizing the structure
        • Transmission spectrum
        • References
      • Building a molecular junction
        • Benzene to DTB: Building the molecule
        • Cleaving gold into two surfaces
        • Combining the molecule and the surfaces
        • Converting the central region to a device configuration
        • References
  • Manual
    • General
      • Introduction
        • New in QuantumATK X-2025.06
        • Installing and running the software
        • How to read this manual
    • Atomic-Scale Calculators
      • DFT: LCAO
        • Introduction
        • Background information
      • DFT: Plane Wave
        • Introduction
        • Background information
      • Semi Empirical
        • Introduction
        • Background information
        • Parameters
      • Force Field
        • Introduction
        • TremoloX
        • TremoloX potential classes
        • Neural network based force field parameter sets
        • How to choose the right pretrained neural network based force field
        • TremoloX potential parameter sets
        • Pretrained moment tensor potential (MTP) parameter sets
      • NEGF: Device Calculators
        • Introduction
        • Device configuration
        • Non-equilibrium electron distribution
        • Effective potential
        • Total energy and forces
        • Transmission coefficient
        • Electrical current
        • References
    • Python in QuantumATK
      • ATK-Python
        • Python packages in QuantumATK
        • Using NumPy with QuantumATK
        • Cloning of QuantumATK Python objects
        • Plotting using pylab
      • Physical quantities and units
        • Usage Examples
        • Units available in QuantumATK
      • Read and Write Support
        • HDF5 (Default File Format)
      • Metatext
      • Spin
        • Usage Example
        • Note about Spin.All
        • Note on Spin in low level interface functions
      • Command Line Usage with QATK Shell Environments
        • Introduction
        • Use QuantumATK effectively from CLI: Shell Environments
        • Customize the environment: Python venvs
    • QuantumATK Reference Manual
      • Geometry
        • Lattices
      • Calculators
        • Common Parameters
        • DFT Calculators
        • MBPT Calculators
        • Semi-Empirical Calculator
        • Counterpoise Correction
        • Low level entities
      • Analysis
        • Common Analysis
        • Bulk Analysis
        • Device Analysis
        • DFT + U
      • Study
      • Dynamics and Optimization
        • Optimization
        • Molecular Dynamics
        • Surface Process Simulation
        • Moment Tensor Potential
        • Monte Carlo
        • Hyperdynamics
        • Constraints
        • MD Analysis
        • Image Interpolation Algorithms (NEB)
      • Defects
        • Characterization
        • Migration
      • COSMO-RS
        • Material Descriptions
        • Properties
        • Stored Data
      • Polymers
        • Builders And Equilibration
        • Potentials
        • Analysis
      • Input and Output
      • Periodic Table
      • Utilities
      • Plot
        • NanoLab Plot Reference Manual
        • Plot
      • Full QuantumATK package
        • QuantumATK
    • Technical Notes
      • Poisson solvers
        • The Hartree potential
        • Boundary conditions
        • Boundary Conditions in NEGF
        • Dielectric and metallic regions
        • Poisson solvers
        • References
      • Occupation Methods
        • Background
        • Comparison of smearing methods
        • References
      • Pseudopotentials and basis sets available in QuantumATK
        • Pseudopotentials
        • LCAO basis sets
        • Accuracy tests for elemental solids
        • Accuracy tests for mixed solids
        • Notes for each pseudopotential type
        • References
      • Doping methods available in QuantumATK
        • General background
        • Explicit charge
        • Atomic compensation charges
      • Optical response functions
        • Linear response coefficients
      • Hybrid Functionals
        • Background
        • ACE Implementation
        • Usage Examples
        • References
      • NEGF Convergence Guide
        • Introduction
        • Zero-bias NEGF calculations
        • Finite-bias NEGF calculations
        • SCF iteration control parameters
        • Contact support
      • Spin-Polarized NEGF Convergence Guide
        • Systems investigated
        • Calculating the self-energy matrix
        • Zero and finite-bias convergence: mixing parameters
        • Zero and finite-bias convergence: electrode-length and k-point sampling
        • Electrode validator
        • Contact support
      • Noncollinear spins and spin transfer torque in devices
      • Parallelization of QuantumATK calculations
        • Unit-of-work
        • Parallelization levels in QuantumATK
        • Bulk calculations
        • NEGF calculations
        • Examples of multi-level parallelisms in QuantumATK
        • References
      • GPU acceleration of proprietary feature calculations
        • Enabling GPU acceleration
        • LCAOCalculator and SemiEmpiricalCalculator
        • DeviceLCAOCalculator and DeviceSemiEmpiricalCalculator
        • Poisson solvers
        • Force Field
        • Machine-learned Force Field Training
        • Parallelization
        • Performance tips for DFT and Semi-Empirical
        • Examples
      • Performance troubleshooting guide
        • Running out of memory?
        • Want to make it run faster?
      • Study objects
        • Restart example
      • Finding Transition States
        • Nudged Elastic Band
        • Minimum Mode Following Techniques
        • Best Practices and Recommendations
        • References
      • Molecular Dynamics
        • Introduction
        • Methodology
        • NVE Simulations
        • NVT Simulations
        • NPT Simulations
        • Non-Equilibrium Simulations
        • MD Simulations with Constraints
        • Device Configurations
        • Molecules
      • Charged Point Defects
        • Defining defects
        • Pristine Reference Configuration
        • Chemical Potentials in Compound Materials
        • Charged Point Defect Calculation
        • Analyzing charged point defect calculations
        • Defect migration
        • Diffusivity of defects
        • Analyzing Diffusion Results
      • \(G_0W_0\) calculator in QuantumATK
        • Imaginary time and frequency grid
        • Coulomb integrals and Polarizability using Auxiliary Basis Sets and PARI
        • Greens functions in imaginary time
        • Polarizability in imaginary time
        • Transform from imaginary time to imaginary frequency
        • Dielectric tensor and screened Coulomb potential
        • Exchange and correlation Self-energy calculation
        • Solving the quasi-particle equation to get the band energies
        • Schematic view of the algorithm
        • \(\Gamma\) point correction for k-point convergence
        • Parallelization of the algorithm
        • Usage Examples
        • References
      • External machine-learned force fields in QuantumATK
        • Setting up the virtual environment
        • SevenNet
        • Orb models
        • DeePMD-kit
        • MatterSim
        • CHGnet
        • FAIRChem UMA
        • Other Models
    • Atomic data
      • Element data
      • Built-in semiempirical parameter sets in QuantumATK
        • Slater–Koster basis sets
        • Extended Hückel basis sets
    • Sentaurus Materials Workbench Reference Manual
      • Introduction
      • Material specifications
      • Single defect specification and convergence studies
      • Multilayer Builder
      • GrainBoundaryScattering
      • Full SMW package
        • SMW
  • Publications
    • Referencing
    • List of Publications
 
QuantumATK

Workflows Manual¶

  • Introduction to the Workflow Builder
  • Using Tables in the Workflow Builder
  • Introduction to Array Jobs
© 2025 Synopsys, Inc.Visit SolvNetPlus twitter linkedin facebook youtube