• Tutorials
    • New or Recently Updated Tutorials
      • New for QuantumATK Q-2019.12
        • Polymer Builder
      • New for QuantumATK P-2019.03
        • Using the Sentaurus Materials Workbench for studying point defects
        • Viscosity in liquids from molecular dynamics simulations
      • New for QuantumATK O-2018.06
        • Dynamical Matrix study object: Phonons in bulk silicon
        • Formation energies and transition levels of charged defects
        • Relaxation of devices using the OptimizeDeviceConfiguration study object
        • Electrical characteristics of devices using the IVCharacteristics study object
        • Photocurrent in a silicon p-n junction
      • New for QuantumATK 2017.0
        • DFT-1/2 and DFT-PPS density functional methods for electronic structure calculations
        • Introducing the QuantumATK plane-wave DFT calculator
        • Metadynamics Simulation of Cu Vacancy Diffusion on Cu(111) - Using PLUMED
        • Determination of low strain interfaces via geometric matching
        • Open-circuit voltage profile of a Li-S battery: ReaxFF molecular dynamics
      • Updated for QuantumATK 2017.0
        • Inelastic current in a silicon p-n junction
        • Slater-Koster tight-binding models in ATK-SE
        • Elastic scattering, mean free path, mobility: Impurity scattering in a silicon nanowire
        • Phonon-limited mobility in graphene using the Boltzmann transport equation
    • Getting started
      • Introduction to QuantumATK
        • Getting Familiar with QuantumATK
        • Band Structure of a SiC Crystal
        • Transport in a graphene nanoribbon with a distortion
        • Building a Graphene Nanoribbon Device
      • Transport calculations with QuantumATK
        • Introduction
        • Geometry for transport calculations
        • Getting started
        • Convergence of electrode parameters
        • Zero-bias analysis
        • Finite-bias calculations
        • Summary
      • Calculate the band structure of a crystal
        • Start QuantumATK and create a new project
        • Import the Silicon structure from the Database and send it to the Scripter
        • Set up the calculation and analyse the band structure
      • Phonons, Bandstructure and Thermoelectrics
        • Introduction
        • Phonon Bandstructure of a Graphene Nanoribbon
        • Analyzing the Results
        • Algorithmic Details of the Phonon Calculator
        • Calculating Electrical and Heat Transport for a Graphene Nanoribbon
      • Manage 3D View and Select Atoms
        • Rotations
        • Reset View
        • Zoom
        • Drag
        • Camera and View Planes
        • Selections
      • Import/Export files in QuantumATK
        • Stash Items
        • Add from Database
        • Add from Files
        • Add from Plugins
        • Save and Export Structures
      • Builder Manual
        • Introduction
        • Importing, adding, and exporting structures
        • Mouse and key operations
        • Using the Move Tool
        • Overview of built-in plugins
        • Managing plugins using the AddOn Manager
      • Introducing the QuantumATK plane-wave DFT calculator
        • Introduction
    • Tips and tricks
      • SSH keys
        • Create a pair of public and private SSH keys
        • Add the public key to authorized SSH keys on the remote cluster
        • Test the password-less SSH connection
      • How to create AddOns for QuantumATK
        • Basic Structure of a AddOn Module
        • Example 1: A Plugin to Read XYZ Files
        • Example 2: Plugin to export configurations
        • Example 3: Plugin to read electron densities
        • How to install AddOns
        • Test the NPZFilters AddOn
      • Make Movies from QuantumATK Trajectory Files
        • Creating Animated GIF
        • Rotation Animator
        • Movie from Trajectory Files
      • Pymatgen in QuantumATK
        • Installation
        • Testing
        • Updating
      • Converting lattices: Rhombohedral to hexagonal and back
        • Conversion between hP and hR representations
        • Converting hP supercell to hR primitive cell
        • Crystal classifications
        • References
      • Reusing electrodes in device calculations
        • Separate scripts for electrodes and device
      • Initialize from a converged state
        • Introduction
        • Examples
      • Restarting a stopped calculation
        • Saving the checkpoint file
        • Restarting the calculation from the checkpoint file
      • Compute quantities from converged simulations
    • QuantumATK tasks and workflows
      • Job Manager for local execution of QuantumATK scripts
        • Execute QuantumATK simualtions via the Job Manager
        • Serial execution
        • Threading
        • MPI parallelization
        • Machine Manager
      • Job Manager for remote execution of QuantumATK scripts
        • A single remote machine
        • Custom job settings
        • Debugging
        • Adding several remote machines
      • How to create AddOns for QuantumATK
        • Basic Structure of a AddOn Module
        • Example 1: A Plugin to Read XYZ Files
        • Example 2: Plugin to export configurations
        • Example 3: Plugin to read electron densities
        • How to install AddOns
        • Test the NPZFilters AddOn
      • Make CIF File Defining Crystal Structure
        • Description and Need
        • Example
      • Import XYZ, CIF, CAR, VASP Files in QuantumATK
        • Drag and Drop
        • Importing structures in a script
      • Export XYZ, CIF, CAR, VASP Files in QuantumATK
        • Built-in export filters
        • Exporting from scripts
      • Manage 3D View and Select Atoms
        • Rotations
        • Reset View
        • Zoom
        • Drag
        • Camera and View Planes
        • Selections
      • POV-Ray images from QuantumATK
        • Elementary functionalities through an example
        • Examining the .pov file
        • Exporting pictures with POV-Ray
      • Carbon Nanotube Junctions
        • Setting up the geometry
      • Capping a carbon nanotube
        • Build an extended (5,5) carbon nanotube
        • Cut the fullerene in half
        • Capping the tube
        • Finalizing the geometry
      • Simple carbon nanotube device
        • Build and geometry optimize a short CNT
        • CNT device configuration
      • Building a Si-Si3N4 Interface
        • Preparations: Two crystals
        • Building the interface
        • Final adjustment
        • Doubling down: Buried layer model
        • Interface as a device model
      • Build a graphene nanoribbon transistor
        • Small nanoribbon transistor
        • A longer nanoribbon transistor
      • Commensurate supercells for rotated graphene layers
        • Additional rotated structures
        • References
      • Molecular builder
        • Ethanol molecule
        • Caffeine molecule
        • Going further
        • Export the Stash Configuration file
      • Nanosheet with a hole
      • MoS2 Nanotubes
      • Graphene–Nickel interface
        • Creating the structure
        • More configurations
      • Stone–Wales Defects in Nanotubes
        • Creating the defect and wrapping the tube
        • Optimizing the structure
        • Transmission spectrum
        • References
      • Building a molecular junction
        • Benzene to DTB: Building the molecule
        • Cleaving gold into two surfaces
        • Combining the molecule and the surfaces
        • Converting the central region to a device configuration
        • References
      • Using the Crystal Builder
        • Introduction
        • Crystal structure of black phosphorus
        • Phosphorene and its bandstructure
        • References
    • ATK explained
      • Why are so many k-points needed in the transport direction in a device calculation?
      • The DFTB model in ATK-SE
        • Installing DFTB parameters
        • Testing the installation
        • Spin polarized calculations with DFTB
      • Accessing QuantumATK internal variables
        • Internal matrices accessible in QuantumATK
        • Multi-terminal conduction
        • Transmission projection
        • AC conductance
        • References
      • Slater-Koster tight-binding models in ATK-SE
        • Introduction
        • Onsite matrix element
        • Offsite matrix elements
        • Defining the full Slater-Koster table
        • Silicon band structure
        • Adding hydrogen
        • Band gaps of passivated silicon nanowires
        • References
      • Linear response current – how to compute it, and why it is often not a good idea
      • Introducing the QuantumATK plane-wave DFT calculator
        • Introduction
    • Semiconductors
      • Phonon-limited mobility in graphene using the Boltzmann transport equation
        • Geometry and electronic structure of graphene
        • Phonons in Graphene
        • Mobility of graphene
        • Convergence of q- and k-point sampling
        • Theory section
        • References
      • Effective mass of electrons in silicon
        • Introduction
        • Background
        • Set up the calculation
        • Analyze the results
        • Going further
        • References
      • Spin-orbit splitting of semiconductor band structures
        • Relavistic effects in Kohn-Sham DFT
        • Silicon band splitting with ATK-DFT
        • SO+MGGA band gap
        • GaAs band structure with ATK-SE and SO coupling
        • References
      • Silicon p-n junction
        • Silicon bulk: Slater-Koster vs DFT-MGGA
        • Silicon device
        • Analyzing the results
        • References
      • Optical Properties of Silicon
        • Introduction
        • Electronic structure and optical properties of silicon
        • References
      • NiSi2–Si interface
        • Create the NiSi2/Si device
        • Set-up the calculation for the undoped device
        • Dope the device
        • Analysis of the results
        • Finite-bias calculations
        • References
      • Bi2Se3 topological insulator
        • Build the Bi2Se3 crystal
        • Bi2Se3 bulk band structure
        • Bi2Se3 surface: Spin-orbit band structure
        • DOS analysis: Dirac cone finger print
        • Penetration depth of surface states
        • Fermi surface and spin directions
        • Topological Invariants
        • References
      • Effective band structure of random alloy InGaAs
        • Methodology
        • Band structures of InAs
        • In0.53Ga0.47As random alloy
        • Finite broadening
        • Final comments
        • References
      • Complex bandstructure of Si(100)
        • Background
        • Si(100) surface
        • Complex bandstructure calculation
        • Analysing the results
        • 3D and 2D visualizations
        • References
      • InAs p-i-n junction
        • Setting up the device geometry
        • Running the calculations
        • Defining the work function of the metal gate
        • Performing a gate scan
        • References
      • Inelastic current in a silicon p-n junction
        • Creating the silicon p-n junction
        • Transmission calculation without electron-phonon interactions
        • Transmission calculation with electron-phonon interactions
        • Speeding up the calculations
        • References
      • Elastic scattering, mean free path, mobility: Impurity scattering in a silicon nanowire
        • Introduction
        • Defected silicon nanowires
        • Elastic scattering mean free path
        • Fermi levels in doped nanowires
        • Doping dependent mobility
        • Summary and discussion
        • Appendix: Building the nanowires
        • References
      • Coupling QuantumATK with Synopsys tools
        • Preparations
        • Installing the addon
        • New project
        • Silicon crystal
        • DFT model setup
        • Running the calculation
        • Visualizing the band structure
        • Exporting the band structure to SAI format
        • Batch processing and command line usage
      • Virtual Crystal Approximation for InGaAs random alloy simulations
        • Introduction
        • Setting up the VCA calculations for InxGa1-xAs
        • Analyzing the results for VCA with InxGa1-xAs
        • Calculating effective masses
        • Summary and discussion
        • References
      • DFT-1/2 and DFT-PPS density functional methods for electronic structure calculations
        • DFT-1/2 methods
        • DFT-PPS method
        • References
      • Electrical characteristics of devices using the IVCharacteristics study object
        • Introduction
        • Calculation and preliminary analysis of the \(V_{DG}\) curve
        • Extending the range of the \(V_{DG}\) curve
        • Analysis of the \(V_{DG}\) curve in the subthreshold region
        • Calculating the drain-induced barrier lowering
        • References
      • Formation energies and transition levels of charged defects
        • Procedure for calculating the formation energy
        • Setting up the calculation
        • Analyzing the results
        • Discussion and summary
        • Appendix
        • References
      • Using the Sentaurus Materials Workbench for studying point defects
        • Background
        • Getting started
        • Setting up the calculation
        • Run the calculation
        • Analyzing the results
        • Including vibrational contributions
        • Conclusions
        • References
    • Batteries and energy storage
      • Li-air battery interface
        • Li2O2 bulk and surface structures
        • Li2CO3 bulk and surface structures
        • The Li2O2/Li2CO3 interface
        • References
      • Li-ion diffusion in LiFePO4 for battery applications
        • Import LiFePO4 bulk structure
        • Optimize LiFePO4 lattice parameters
        • Create the Li\(_{1-x}\)FePO4 structures
        • Optimize initial and final configurations
        • Create initial NEB trajectories
        • Optimize Li diffusion path
        • Calculate the reaction rates using harmonic transition state theory
        • References
      • Open-circuit voltage profile of a Li-S battery: ReaxFF molecular dynamics
        • Amorphous Li0.4S compound
        • Simulated annealing
        • Open-circuit voltage
        • Full open-circuit voltage profile
        • Radial distribution functions
        • References
      • Photocurrent in a silicon p-n junction
        • Device ground state
        • Photocurrent
        • References
    • Complex interfaces
      • Building an interface between Ag(100) and Au(111)
        • Import silver and gold crystals
        • Building the Ag(100) and Au(111) crystals
        • Building the interface
        • Building the device configuration
      • Advanced device relaxation - manual workflow
        • Introduction
        • Preparations
        • Electrode relaxation
        • Central region relaxation
        • 1DMIN optimization of the interface using 2-probe calculations
        • Infographics
      • Relaxation of devices using the OptimizeDeviceConfiguration study object
        • Introduction
        • Unrelaxed Ag(100)|Ag(111) device
        • Set up and run the device geometry optimization
        • Relaxed device structures
        • Appendix
      • Atomic-scale capacitance
        • Build the parallel plate capacitor
        • Calculations
        • Analysis
        • Bias-dependent capacitance
        • Dielectric spacer material
      • Graphene–Nickel interface
        • Creating the structure
        • More configurations
      • Building a Si-Si3N4 Interface
        • Preparations: Two crystals
        • Building the interface
        • Final adjustment
        • Doubling down: Buried layer model
        • Interface as a device model
      • NiSi2–Si interface
        • Create the NiSi2/Si device
        • Set-up the calculation for the undoped device
        • Dope the device
        • Analysis of the results
        • Finite-bias calculations
        • References
      • Determination of low strain interfaces via geometric matching
        • Method description
        • Input and output description
        • Example 1: Lattice match between two bulk systems
        • Example 2: Lattice match between a bulk system with a predefined surface
        • References
    • Tubes, ribbons and other 1D nanostructures
      • Transport in graphene nanoribbons
        • Introduction
        • Band structure of 2D graphene
        • Band structure of an armchair ribbon
        • Transport properties of a zigzag nanoribbon
      • Transmission spectrum of a spin-polarized atomic chain
        • Building the 1D carbon chain
        • Spin-parallel transmission spectrum
        • Spin anti-parallel transmission spectrum
      • Introduction to noncollinear spin
        • From collinear to noncollinear spin
        • Getting started
        • Spin rotation of 120°
        • Analysis
        • Spin-orbit interactions
      • Carbon Nanotube Junctions
        • Setting up the geometry
      • Capping a carbon nanotube
        • Build an extended (5,5) carbon nanotube
        • Cut the fullerene in half
        • Capping the tube
        • Finalizing the geometry
      • Simple carbon nanotube device
        • Build and geometry optimize a short CNT
        • CNT device configuration
      • Thermoelectric effects in a CNT with isotope doping
        • CNT device with tags for 14C doping
        • Phonon transmission
        • Electron transmission
        • Thermoelectric transport properties
        • References
      • Graphene nanoribbon device: Electric properties
        • Electron transmission spectrum
        • Effect of the Gate Potential
        • I–V characteristics
        • When is the linear response approximation valid?
        • Further analysis with ATK-SE
        • Temperature dependent conductance
        • Comparison to results for a longer device
        • References
      • Silicon nanowire field-effect transistor
        • Introduction
        • Band structure of a Si(100) nanowire
        • Setting up and running the calculations
        • Si(100) nanowire FET device
        • Zero gate voltage calculation
      • Exploring Graphene
        • Build a graphene sheet
        • Build a CNT
        • Transmission spectrum of a GNR
        • Twisted nanoribbon
        • Möbius nanoribbon
        • Buckling a graphene sheet
      • Elastic scattering, mean free path, mobility: Impurity scattering in a silicon nanowire
        • Introduction
        • Defected silicon nanowires
        • Elastic scattering mean free path
        • Fermi levels in doped nanowires
        • Doping dependent mobility
        • Summary and discussion
        • Appendix: Building the nanowires
        • References
    • Graphene and other 2D materials
      • Transmission spectrum of perfect sheets of graphene and MoS2
        • Introduction
        • Unit cell for transmission
        • Graphene
        • MoS2
      • Meta-GGA and 2D confined InAs
        • TB09 meta-GGA
        • Bulk InAs band structure with TB09 meta-GGA
        • Setting up and passivating an InAs slab
        • Band structure with default hydrogen atoms
        • Analyzing the results
        • Passivation using pseudo-hydrogen
        • Results
        • Passivation using compensation charges
        • Results
        • Non-parabolicity in confined structures
        • Nanowire band structure
        • References
      • Opening a band gap in silicene and bilayer graphene with an electric field
        • Bilayer graphene
        • Silicene
        • References
        • More reading
      • Commensurate supercells for rotated graphene layers
        • Additional rotated structures
        • References
      • Spin-dependent Bloch states in graphene nanoribbons
        • Band structure of a zigzag nanoribbon
        • Bloch states
        • Introducing spin
        • Electron density and Mulliken populations
        • References
      • Exploring Graphene
        • Build a graphene sheet
        • Build a CNT
        • Transmission spectrum of a GNR
        • Twisted nanoribbon
        • Möbius nanoribbon
        • Buckling a graphene sheet
    • Phonons and thermal transport
      • Dynamical Matrix study object: Phonons in bulk silicon
        • Introduction
        • Phonons
        • ATK-ForceField
        • References
      • Vibrational modes and Vibration Visualizer
        • MoS2 monolayer
        • Nanophononic metamaterials
      • Phonons, Bandstructure and Thermoelectrics
        • Introduction
        • Phonon Bandstructure of a Graphene Nanoribbon
        • Analyzing the Results
        • Algorithmic Details of the Phonon Calculator
        • Calculating Electrical and Heat Transport for a Graphene Nanoribbon
      • Phonon-limited mobility in graphene using the Boltzmann transport equation
        • Geometry and electronic structure of graphene
        • Phonons in Graphene
        • Mobility of graphene
        • Convergence of q- and k-point sampling
        • Theory section
        • References
      • Thermoelectric effects in a CNT with isotope doping
        • CNT device with tags for 14C doping
        • Phonon transmission
        • Electron transmission
        • Thermoelectric transport properties
        • References
      • Inelastic Electron Spectroscopy of an H2 molecule placed between 1D Au chains
        • Introduction
        • Device setup
        • Calculation of IETS
        • Analysis
        • References
    • Molecular dynamics
      • Molecular Dynamics: Basics
        • Introduction
        • Methodology
        • NVE Simulations
        • NVT Simulations
        • NPT Simulations
        • MD Simulations with Constraints
        • Device Configurations
      • Simulating Thin Film Growth via Vapor Deposition
        • Introduction
        • Simulation Strategies
        • Preparing the System
        • Setting up the Deposition Simulation
        • Running the Simulation
        • General Remarks
      • Simulating Si Deposition using Silane
        • Background
        • Getting started
        • Step 1: Reference Calculations
        • Step 2: Adsorption and Dissociation of SiH4
        • Step 3: Formation and Desorption of H2
        • Conclusions
        • References
      • Simulating Ion Bombardment on Graphene Sheets
        • Setting up the Graphene Sheet:
        • Adding a Bombardment Atom
        • Setting up the Simulation
        • Modifying the Script
        • References
      • Uniaxial and Biaxial Stress in Silicon
        • Introduction
        • Uniaxial Stress
        • Biaxial Stress
      • Adding, Combining, and Modifying Classical Potentials
        • Introduction
        • Adding a New Classical Potential from Scratch
        • A Potential for Amorphous Oxides
        • Combining a Tersoff and a Lennard-Jones Potential
        • Intra- and Inter-Layer Cohesion in MoS2
      • Generating Amorphous Structures
        • Introduction
        • Amorphous Structure Generation with Classical MD Simulations
        • Refining Amorphous Structures
        • Creating Crystal/Amorphous Interfaces
        • Further Examples
      • Young’s modulus of a CNT with a defect
        • CNT bulk configuration
        • Configuring the MD simulation
        • Adding Python hooks
        • Computing Young’s modulus
        • Visualize and analyse the results
        • References
      • Interfacial thermal conductance
        • Introduction
        • Reverse non-equilibrium molecular dynamics (RNEMD)
        • Non-equilibrium Green’s function method
        • References
      • Diffusion in Liquids from Molecular Dynamics Simulations
        • Theory
        • Computational Procedure
        • Analysis
      • Simulating a creep experiment of polycrystalline copper
        • Installing the polycrystal builder plugin
        • Building the polycrystalline cell
        • Analyzing the grain structure
        • Setting up the creep simulation
        • Running the simulation
        • Analyzing the results
        • Outlook
        • References
      • Metadynamics Simulation of Cu Vacancy Diffusion on Cu(111) - Using PLUMED
        • Introduction
        • Theoretical Background
        • Metadynamics Simulation of Cu Vacancy on Cu(111)
        • References
      • Open-circuit voltage profile of a Li-S battery: ReaxFF molecular dynamics
        • Amorphous Li0.4S compound
        • Simulated annealing
        • Open-circuit voltage
        • Full open-circuit voltage profile
        • Radial distribution functions
        • References
      • Viscosity in liquids from molecular dynamics simulations
        • Theory
        • Computational procedure
        • Analyzing the results
        • Extending the results
    • Spintronics
      • Spin Transfer Torque
        • Introduction
        • Getting Started
        • Calculate the STT
        • Angle Dependence
        • References
      • Transmission spectrum of a spin-polarized atomic chain
        • Building the 1D carbon chain
        • Spin-parallel transmission spectrum
        • Spin anti-parallel transmission spectrum
      • Introduction to noncollinear spin
        • From collinear to noncollinear spin
        • Getting started
        • Spin rotation of 120°
        • Analysis
        • Spin-orbit interactions
      • Spin transport in magnetic tunnel junctions
        • Introduction
        • Getting started
        • Parallel spin
        • Anti-parallel spin
        • Tunneling magnetoresistance
        • Adaptive k-point grid
        • Spin-transfer torque
        • Relaxing the device central region
        • References
      • Relativistic effects in bulk gold
        • GGA band structure
        • Spin-orbit GGA band structure
        • References
      • Spin-orbit splitting of semiconductor band structures
        • Relavistic effects in Kohn-Sham DFT
        • Silicon band splitting with ATK-DFT
        • SO+MGGA band gap
        • GaAs band structure with ATK-SE and SO coupling
        • References
      • Bi2Se3 topological insulator
        • Build the Bi2Se3 crystal
        • Bi2Se3 bulk band structure
        • Bi2Se3 surface: Spin-orbit band structure
        • DOS analysis: Dirac cone finger print
        • Penetration depth of surface states
        • Fermi surface and spin directions
        • Topological Invariants
        • References
      • Noncollinear calculations for metallic nanowires
        • Building the device
        • Setting up the collinear calculation and analyzing the results
        • Setting up the noncollinear calculation
        • Analyzing the results
        • Including spin-orbit coupling in noncollinear calculations
        • References
      • Electronic structure of NiO with DFT+U
        • Introduction
        • The electronic structure of NiO calculated with DFT
        • DFT+U calculation for the NiO crystal
        • References
    • Molecular electronics
      • Building molecule–surface systems: Benzene on Au(111)
        • Summary of workflow
        • Detailed instructions
        • References
      • Building a molecular junction
        • Benzene to DTB: Building the molecule
        • Cleaving gold into two surfaces
        • Combining the molecule and the surfaces
        • Converting the central region to a device configuration
        • References
      • Molecular Device
        • Zero-bias calculation
        • Analysis of the zero-bias results
        • I-V characteristics
        • References
      • Inelastic Electron Spectroscopy of an H2 molecule placed between 1D Au chains
        • Introduction
        • Device setup
        • Calculation of IETS
        • Analysis
        • References
    • Materials, surfaces and chemistry
      • Polymer Builder
        • Procedure of the Polymer Builder
      • Green’s function surface calculations
        • Atomistic models of a surface
        • NEGF calculation with a single electrode
        • Work function of Ag(100)
        • Convergence wrt. metal layers
      • Polarization
        • Introduction
        • Modern theory of polarization
        • Spontaneous polarization of ferroelectric BaTiO3
        • References
      • Vibrational modes and Vibration Visualizer
        • MoS2 monolayer
        • Nanophononic metamaterials
      • Visualize the LUMO state of a water molecule
        • Building the molecule
        • Calculating the LUMO state
      • Pt diffusion on Pt surfaces using NEB calculations
        • Introduction
        • Creating the Pt ad-atom on Pt(100) structure
        • Creating the final configuration for the exchange diffusion process
        • Creating the final configuration for the direct jump process
        • Constructing the NEB paths
        • Setting up and running the NEB calculations
        • Analyzing the results
        • Conclusions
        • Bibliography
      • Ammonia inversion reaction barrier using DFTB and NEB
        • Setting up the NEB object
        • Performing the NEB simulation
        • Analyzing the NEB simulation
        • A recipe for faster calculations
      • Reconstruction of the Si (100) surface - a geometry optimization study with QuantumATK
        • Introduction
        • Building the geometry
        • Setting up the calculation
        • Results
        • Summary
      • Computing the work function of a metal surface using ghost atoms
        • Why use ghost atoms?
        • Setting up the geometry
        • Defining the parameters of the calculation
        • Calculation and analysis
        • Comments
      • Tuning the work function of silver by deposition of ultrathin oxide layers
        • Ag(100) and MgO(100) surfaces
        • Ag/MgO interface
        • DFT calculations
        • Analyzing the results
        • 1D Projector plugin
        • References
      • Calculating Reaction Rates using Harmonic Transition State Theory
        • Introduction
        • Modeling Pt Adatom Diffusion on Pt(100)
        • Calculating the Rate for Multiple Elementary Reaction Steps
        • References
      • Simulating Si Deposition using Silane
        • Background
        • Getting started
        • Step 1: Reference Calculations
        • Step 2: Adsorption and Dissociation of SiH4
        • Step 3: Formation and Desorption of H2
        • Conclusions
        • References
      • Calculation of Formation Energies
        • Formation energy calculations (or cohesive energy)
        • Cohesive energy of a bulk system
        • Defect formation energy calculations
        • References
      • Uniaxial and Biaxial Stress in Silicon
        • Introduction
        • Uniaxial Stress
        • Biaxial Stress
      • Elastic constants
        • Methodology
        • Calculating elastic constants using classical potentials
        • Calculate elastic constants using DFT
      • Young’s modulus of a CNT with a defect
        • CNT bulk configuration
        • Configuring the MD simulation
        • Adding Python hooks
        • Computing Young’s modulus
        • Visualize and analyse the results
        • References
      • Relativistic effects in bulk gold
        • GGA band structure
        • Spin-orbit GGA band structure
        • References
      • Geometry optimization: CO/Pd(100)
        • Bulk palladium
        • Build the Pd(100) surface and relax it
        • Relax the CO/Pd(100) system
        • Relax the CO molecule
        • Adsorption energy
      • Modeling Vacancy Diffusion in Si0.5 Ge0.5 with AKMC
        • Obtaining an Initial Structure
        • Running the AKMC Simulation
        • Conclusion
      • Computing the piezoelectric tensor for AlN
        • Introduction
        • Computing the piezoelectric tensor
        • Alternative way of calculating the piezoelectric coefficient \({e}_{33}\)
        • Computing the Born effective charge
        • References
      • Formation energies of charged defects - manual workflow
        • Procedure for calculating the formation energy
        • Neutral As vacancy in GaAs
        • Charged As vacancies in GaAs
        • Appendix
        • References
      • Boron diffusion in bulk silicon
        • Creating the B-doped Si crystal
        • Running the AKMC simulation
      • Adaptive Kinetic Monte Carlo Simulation of Pt Island Ripening
        • Introduction
        • Creating the initial configuration
        • Setting up the AKMC Simulation
        • Running the Simulation
        • Analyzing the AKMC Simulation
        • Conclusion
        • References
      • Adaptive Kinetic Monte Carlo Simulation of Pt on Pt(100)
        • Introduction
        • The AKMC method
        • Creating the initial configuration
        • Creating the AKMC script
        • Analyzing the results
        • Conclusion
        • References
      • Crystal Structure Prediction Scripter: Phases of TiO2
        • Setting up the calculation
        • Running the calculations and analyzing results
        • References
      • Electronic structure of NiO with DFT+U
        • Introduction
        • The electronic structure of NiO calculated with DFT
        • DFT+U calculation for the NiO crystal
        • References
      • DFT-D and basis-set superposition error
        • The DFT-D dispersion corrections
        • D2 correction
        • D3 correction
        • BSSE and the counterpoise correction
        • Set-up the graphene bilayer system
        • Geometry optimization without counterpoise correction
        • Including the counterpoise correction
        • Including the D2 dispersion correction
        • Including the D3 dispersion correction
        • Summary of the results
        • References
      • Formation energies and transition levels of charged defects
        • Procedure for calculating the formation energy
        • Setting up the calculation
        • Analyzing the results
        • Discussion and summary
        • Appendix
        • References
      • Using the Sentaurus Materials Workbench for studying point defects
        • Background
        • Getting started
        • Setting up the calculation
        • Run the calculation
        • Analyzing the results
        • Including vibrational contributions
        • Conclusions
        • References
    • Sentaurus Materials Workbench
      • Using the Sentaurus Materials Workbench for studying point defects
        • Background
        • Getting started
        • Setting up the calculation
        • Run the calculation
        • Analyzing the results
        • Including vibrational contributions
        • Conclusions
        • References
    • Plots
    • Plot Gallery
      • Bars
      • Contour
      • Density
      • Density For Weighted Lines
      • Filled Area
      • Line And Annotations
      • Line With Fit
      • Linegroup
      • Multiple Axes
      • Rolling Average
      • Scatter And Bars
      • Transformed Line
      • Working with Plots in NanoLab
        • Editing, Saving and Merging Plots
        • Drop next to, above or below an existing plot
        • Drop on the existing plot
    • QuantumATK as GUI for Quantum ESPRESSO
      • QuantumATK as GUI for Quantum ESPRESSO
        • Setting up a configuration using QuantumATK
        • Exporting a Quantum ESPRESSO input file
        • Adapting the input file
        • Running the ground state calculation
        • Analyzing results
        • More Quantum ESPRESSO calculations
      • Silicon bandstructure and DOS using QuantumATK and Quantum ESPRESSO
        • Bandstructure
        • Density of states
    • QuantumATK as GUI for VASP
      • The VASP Scripter AddOn
        • Create the structure in QuantumATK
        • Export the structure to the VASP scripter
        • Setup tab
        • Accuracy tab
        • Electrons tab
        • Ions tab
        • Properties tab
        • Configuaration tab
        • Bandstructure tab
        • Custom Options tab
        • Generate VASP files
      • Set up and analyze VASP calculations with QuantumATK
        • Setting up the configuration using QuantumATK
        • Use the VASP Scripter to set up the calculation
        • Analyzing the results
      • Using QuantumATK to work with Nudged Elastic Band calculations in VASP
        • Introduction
        • Creating the initial and final configurations
        • Setting up the VASP input for optimizing the bulk Pt
        • Creating and optimizing the end-points
        • Constructing the NEB path
        • Setting up the NEB calculation
        • Analyzing the results
        • References
    • QuantumATK as GUI for LAMMPS
      • LAMMPS trajectories into QuantumATK
        • Preparing a LAMMPS script
        • Running LAMMPS
        • Importing to QuantumATK
        • Postprocessing LAMMPS trajectories
        • References
    • Complete list
      • Introduction to QuantumATK
        • Getting Familiar with QuantumATK
        • Band Structure of a SiC Crystal
        • Transport in a graphene nanoribbon with a distortion
        • Building a Graphene Nanoribbon Device
      • Transport calculations with QuantumATK
        • Introduction
        • Geometry for transport calculations
        • Getting started
        • Convergence of electrode parameters
        • Zero-bias analysis
        • Finite-bias calculations
        • Summary
      • Transport in graphene nanoribbons
        • Introduction
        • Band structure of 2D graphene
        • Band structure of an armchair ribbon
        • Transport properties of a zigzag nanoribbon
      • Building molecule–surface systems: Benzene on Au(111)
        • Summary of workflow
        • Detailed instructions
        • References
      • Building an interface between Ag(100) and Au(111)
        • Import silver and gold crystals
        • Building the Ag(100) and Au(111) crystals
        • Building the interface
        • Building the device configuration
      • Transmission spectrum of a spin-polarized atomic chain
        • Building the 1D carbon chain
        • Spin-parallel transmission spectrum
        • Spin anti-parallel transmission spectrum
      • Introduction to noncollinear spin
        • From collinear to noncollinear spin
        • Getting started
        • Spin rotation of 120°
        • Analysis
        • Spin-orbit interactions
      • Transmission spectrum of perfect sheets of graphene and MoS2
        • Introduction
        • Unit cell for transmission
        • Graphene
        • MoS2
      • Silicon p-n junction
        • Silicon bulk: Slater-Koster vs DFT-MGGA
        • Silicon device
        • Analyzing the results
        • References
      • Carbon Nanotube Junctions
        • Setting up the geometry
      • Advanced device relaxation - manual workflow
        • Introduction
        • Preparations
        • Electrode relaxation
        • Central region relaxation
        • 1DMIN optimization of the interface using 2-probe calculations
        • Infographics
      • Relaxation of devices using the OptimizeDeviceConfiguration study object
        • Introduction
        • Unrelaxed Ag(100)|Ag(111) device
        • Set up and run the device geometry optimization
        • Relaxed device structures
        • Appendix
      • Capping a carbon nanotube
        • Build an extended (5,5) carbon nanotube
        • Cut the fullerene in half
        • Capping the tube
        • Finalizing the geometry
      • Graphene–Nickel interface
        • Creating the structure
        • More configurations
      • Meta-GGA and 2D confined InAs
        • TB09 meta-GGA
        • Bulk InAs band structure with TB09 meta-GGA
        • Setting up and passivating an InAs slab
        • Band structure with default hydrogen atoms
        • Analyzing the results
        • Passivation using pseudo-hydrogen
        • Results
        • Passivation using compensation charges
        • Results
        • Non-parabolicity in confined structures
        • Nanowire band structure
        • References
      • Thermoelectric effects in a CNT with isotope doping
        • CNT device with tags for 14C doping
        • Phonon transmission
        • Electron transmission
        • Thermoelectric transport properties
        • References
      • Building a Si-Si3N4 Interface
        • Preparations: Two crystals
        • Building the interface
        • Final adjustment
        • Doubling down: Buried layer model
        • Interface as a device model
      • Graphene nanoribbon device: Electric properties
        • Electron transmission spectrum
        • Effect of the Gate Potential
        • I–V characteristics
        • When is the linear response approximation valid?
        • Further analysis with ATK-SE
        • Temperature dependent conductance
        • Comparison to results for a longer device
        • References
      • Atomic-scale capacitance
        • Build the parallel plate capacitor
        • Calculations
        • Analysis
        • Bias-dependent capacitance
        • Dielectric spacer material
      • NiSi2–Si interface
        • Create the NiSi2/Si device
        • Set-up the calculation for the undoped device
        • Dope the device
        • Analysis of the results
        • Finite-bias calculations
        • References
      • Spin-dependent Bloch states in graphene nanoribbons
        • Band structure of a zigzag nanoribbon
        • Bloch states
        • Introducing spin
        • Electron density and Mulliken populations
        • References
      • Silicon nanowire field-effect transistor
        • Introduction
        • Band structure of a Si(100) nanowire
        • Setting up and running the calculations
        • Si(100) nanowire FET device
        • Zero gate voltage calculation
      • Spin transport in magnetic tunnel junctions
        • Introduction
        • Getting started
        • Parallel spin
        • Anti-parallel spin
        • Tunneling magnetoresistance
        • Adaptive k-point grid
        • Spin-transfer torque
        • Relaxing the device central region
        • References
      • InAs p-i-n junction
        • Setting up the device geometry
        • Running the calculations
        • Defining the work function of the metal gate
        • Performing a gate scan
        • References
      • Inelastic Electron Spectroscopy of an H2 molecule placed between 1D Au chains
        • Introduction
        • Device setup
        • Calculation of IETS
        • Analysis
        • References
      • Inelastic current in a silicon p-n junction
        • Creating the silicon p-n junction
        • Transmission calculation without electron-phonon interactions
        • Transmission calculation with electron-phonon interactions
        • Speeding up the calculations
        • References
      • Elastic scattering, mean free path, mobility: Impurity scattering in a silicon nanowire
        • Introduction
        • Defected silicon nanowires
        • Elastic scattering mean free path
        • Fermi levels in doped nanowires
        • Doping dependent mobility
        • Summary and discussion
        • Appendix: Building the nanowires
        • References
      • Noncollinear calculations for metallic nanowires
        • Building the device
        • Setting up the collinear calculation and analyzing the results
        • Setting up the noncollinear calculation
        • Analyzing the results
        • Including spin-orbit coupling in noncollinear calculations
        • References
      • Determination of low strain interfaces via geometric matching
        • Method description
        • Input and output description
        • Example 1: Lattice match between two bulk systems
        • Example 2: Lattice match between a bulk system with a predefined surface
        • References
      • Photocurrent in a silicon p-n junction
        • Device ground state
        • Photocurrent
        • References
      • Electrical characteristics of devices using the IVCharacteristics study object
        • Introduction
        • Calculation and preliminary analysis of the \(V_{DG}\) curve
        • Extending the range of the \(V_{DG}\) curve
        • Analysis of the \(V_{DG}\) curve in the subthreshold region
        • Calculating the drain-induced barrier lowering
        • References
      • Calculate the band structure of a crystal
        • Start QuantumATK and create a new project
        • Import the Silicon structure from the Database and send it to the Scripter
        • Set up the calculation and analyse the band structure
      • Effective mass of electrons in silicon
        • Introduction
        • Background
        • Set up the calculation
        • Analyze the results
        • Going further
        • References
      • Phonon-limited mobility in graphene using the Boltzmann transport equation
        • Geometry and electronic structure of graphene
        • Phonons in Graphene
        • Mobility of graphene
        • Convergence of q- and k-point sampling
        • Theory section
        • References
      • Dynamical Matrix study object: Phonons in bulk silicon
        • Introduction
        • Phonons
        • ATK-ForceField
        • References
      • Optical Properties of Silicon
        • Introduction
        • Electronic structure and optical properties of silicon
        • References
      • Polarization
        • Introduction
        • Modern theory of polarization
        • Spontaneous polarization of ferroelectric BaTiO3
        • References
      • Uniaxial and Biaxial Stress in Silicon
        • Introduction
        • Uniaxial Stress
        • Biaxial Stress
      • Spin-orbit splitting of semiconductor band structures
        • Relavistic effects in Kohn-Sham DFT
        • Silicon band splitting with ATK-DFT
        • SO+MGGA band gap
        • GaAs band structure with ATK-SE and SO coupling
        • References
      • Effective band structure of random alloy InGaAs
        • Methodology
        • Band structures of InAs
        • In0.53Ga0.47As random alloy
        • Finite broadening
        • Final comments
        • References
      • Complex bandstructure of Si(100)
        • Background
        • Si(100) surface
        • Complex bandstructure calculation
        • Analysing the results
        • 3D and 2D visualizations
        • References
      • Bi2Se3 topological insulator
        • Build the Bi2Se3 crystal
        • Bi2Se3 bulk band structure
        • Bi2Se3 surface: Spin-orbit band structure
        • DOS analysis: Dirac cone finger print
        • Penetration depth of surface states
        • Fermi surface and spin directions
        • Topological Invariants
        • References
      • Coupling QuantumATK with Synopsys tools
        • Preparations
        • Installing the addon
        • New project
        • Silicon crystal
        • DFT model setup
        • Running the calculation
        • Visualizing the band structure
        • Exporting the band structure to SAI format
        • Batch processing and command line usage
      • Virtual Crystal Approximation for InGaAs random alloy simulations
        • Introduction
        • Setting up the VCA calculations for InxGa1-xAs
        • Analyzing the results for VCA with InxGa1-xAs
        • Calculating effective masses
        • Summary and discussion
        • References
      • DFT-1/2 and DFT-PPS density functional methods for electronic structure calculations
        • DFT-1/2 methods
        • DFT-PPS method
        • References
      • Formation energies and transition levels of charged defects
        • Procedure for calculating the formation energy
        • Setting up the calculation
        • Analyzing the results
        • Discussion and summary
        • Appendix
        • References
      • Using the Sentaurus Materials Workbench for studying point defects
        • Background
        • Getting started
        • Setting up the calculation
        • Run the calculation
        • Analyzing the results
        • Including vibrational contributions
        • Conclusions
        • References
      • Molecular Dynamics: Basics
        • Introduction
        • Methodology
        • NVE Simulations
        • NVT Simulations
        • NPT Simulations
        • MD Simulations with Constraints
        • Device Configurations
      • Phonons, Bandstructure and Thermoelectrics
        • Introduction
        • Phonon Bandstructure of a Graphene Nanoribbon
        • Analyzing the Results
        • Algorithmic Details of the Phonon Calculator
        • Calculating Electrical and Heat Transport for a Graphene Nanoribbon
      • Simulating Thin Film Growth via Vapor Deposition
        • Introduction
        • Simulation Strategies
        • Preparing the System
        • Setting up the Deposition Simulation
        • Running the Simulation
        • General Remarks
      • Simulating Si Deposition using Silane
        • Background
        • Getting started
        • Step 1: Reference Calculations
        • Step 2: Adsorption and Dissociation of SiH4
        • Step 3: Formation and Desorption of H2
        • Conclusions
        • References
      • Simulating Ion Bombardment on Graphene Sheets
        • Setting up the Graphene Sheet:
        • Adding a Bombardment Atom
        • Setting up the Simulation
        • Modifying the Script
        • References
      • Vibrational modes and Vibration Visualizer
        • MoS2 monolayer
        • Nanophononic metamaterials
      • Young’s modulus of a CNT with a defect
        • CNT bulk configuration
        • Configuring the MD simulation
        • Adding Python hooks
        • Computing Young’s modulus
        • Visualize and analyse the results
        • References
      • Geometry optimization: CO/Pd(100)
        • Bulk palladium
        • Build the Pd(100) surface and relax it
        • Relax the CO/Pd(100) system
        • Relax the CO molecule
        • Adsorption energy
      • Interfacial thermal conductance
        • Introduction
        • Reverse non-equilibrium molecular dynamics (RNEMD)
        • Non-equilibrium Green’s function method
        • References
      • Diffusion in Liquids from Molecular Dynamics Simulations
        • Theory
        • Computational Procedure
        • Analysis
      • Simulating a creep experiment of polycrystalline copper
        • Installing the polycrystal builder plugin
        • Building the polycrystalline cell
        • Analyzing the grain structure
        • Setting up the creep simulation
        • Running the simulation
        • Analyzing the results
        • Outlook
        • References
      • Metadynamics Simulation of Cu Vacancy Diffusion on Cu(111) - Using PLUMED
        • Introduction
        • Theoretical Background
        • Metadynamics Simulation of Cu Vacancy on Cu(111)
        • References
      • Open-circuit voltage profile of a Li-S battery: ReaxFF molecular dynamics
        • Amorphous Li0.4S compound
        • Simulated annealing
        • Open-circuit voltage
        • Full open-circuit voltage profile
        • Radial distribution functions
        • References
      • Viscosity in liquids from molecular dynamics simulations
        • Theory
        • Computational procedure
        • Analyzing the results
        • Extending the results
      • Green’s function surface calculations
        • Atomistic models of a surface
        • NEGF calculation with a single electrode
        • Work function of Ag(100)
        • Convergence wrt. metal layers
      • Li-ion diffusion in LiFePO4 for battery applications
        • Import LiFePO4 bulk structure
        • Optimize LiFePO4 lattice parameters
        • Create the Li\(_{1-x}\)FePO4 structures
        • Optimize initial and final configurations
        • Create initial NEB trajectories
        • Optimize Li diffusion path
        • Calculate the reaction rates using harmonic transition state theory
        • References
      • Li-air battery interface
        • Li2O2 bulk and surface structures
        • Li2CO3 bulk and surface structures
        • The Li2O2/Li2CO3 interface
        • References
      • Pt diffusion on Pt surfaces using NEB calculations
        • Introduction
        • Creating the Pt ad-atom on Pt(100) structure
        • Creating the final configuration for the exchange diffusion process
        • Creating the final configuration for the direct jump process
        • Constructing the NEB paths
        • Setting up and running the NEB calculations
        • Analyzing the results
        • Conclusions
        • Bibliography
      • Calculation of Formation Energies
        • Formation energy calculations (or cohesive energy)
        • Cohesive energy of a bulk system
        • Defect formation energy calculations
        • References
      • Reconstruction of the Si (100) surface - a geometry optimization study with QuantumATK
        • Introduction
        • Building the geometry
        • Setting up the calculation
        • Results
        • Summary
      • Visualize the LUMO state of a water molecule
        • Building the molecule
        • Calculating the LUMO state
      • Ammonia inversion reaction barrier using DFTB and NEB
        • Setting up the NEB object
        • Performing the NEB simulation
        • Analyzing the NEB simulation
        • A recipe for faster calculations
      • Generating Amorphous Structures
        • Introduction
        • Amorphous Structure Generation with Classical MD Simulations
        • Refining Amorphous Structures
        • Creating Crystal/Amorphous Interfaces
        • Further Examples
      • Opening a band gap in silicene and bilayer graphene with an electric field
        • Bilayer graphene
        • Silicene
        • References
        • More reading
      • Computing the work function of a metal surface using ghost atoms
        • Why use ghost atoms?
        • Setting up the geometry
        • Defining the parameters of the calculation
        • Calculation and analysis
        • Comments
      • Tuning the work function of silver by deposition of ultrathin oxide layers
        • Ag(100) and MgO(100) surfaces
        • Ag/MgO interface
        • DFT calculations
        • Analyzing the results
        • 1D Projector plugin
        • References
      • Elastic constants
        • Methodology
        • Calculating elastic constants using classical potentials
        • Calculate elastic constants using DFT
      • Relativistic effects in bulk gold
        • GGA band structure
        • Spin-orbit GGA band structure
        • References
      • Modeling Vacancy Diffusion in Si0.5 Ge0.5 with AKMC
        • Obtaining an Initial Structure
        • Running the AKMC Simulation
        • Conclusion
      • Computing the piezoelectric tensor for AlN
        • Introduction
        • Computing the piezoelectric tensor
        • Alternative way of calculating the piezoelectric coefficient \({e}_{33}\)
        • Computing the Born effective charge
        • References
      • Formation energies of charged defects - manual workflow
        • Procedure for calculating the formation energy
        • Neutral As vacancy in GaAs
        • Charged As vacancies in GaAs
        • Appendix
        • References
      • Boron diffusion in bulk silicon
        • Creating the B-doped Si crystal
        • Running the AKMC simulation
      • Calculating Reaction Rates using Harmonic Transition State Theory
        • Introduction
        • Modeling Pt Adatom Diffusion on Pt(100)
        • Calculating the Rate for Multiple Elementary Reaction Steps
        • References
      • Adaptive Kinetic Monte Carlo Simulation of Pt Island Ripening
        • Introduction
        • Creating the initial configuration
        • Setting up the AKMC Simulation
        • Running the Simulation
        • Analyzing the AKMC Simulation
        • Conclusion
        • References
      • Adaptive Kinetic Monte Carlo Simulation of Pt on Pt(100)
        • Introduction
        • The AKMC method
        • Creating the initial configuration
        • Creating the AKMC script
        • Analyzing the results
        • Conclusion
        • References
      • Crystal Structure Prediction Scripter: Phases of TiO2
        • Setting up the calculation
        • Running the calculations and analyzing results
        • References
      • DFT-D and basis-set superposition error
        • The DFT-D dispersion corrections
        • D2 correction
        • D3 correction
        • BSSE and the counterpoise correction
        • Set-up the graphene bilayer system
        • Geometry optimization without counterpoise correction
        • Including the counterpoise correction
        • Including the D2 dispersion correction
        • Including the D3 dispersion correction
        • Summary of the results
        • References
      • Formation energies and transition levels of charged defects
        • Procedure for calculating the formation energy
        • Setting up the calculation
        • Analyzing the results
        • Discussion and summary
        • Appendix
        • References
      • Using the Sentaurus Materials Workbench for studying point defects
        • Background
        • Getting started
        • Setting up the calculation
        • Run the calculation
        • Analyzing the results
        • Including vibrational contributions
        • Conclusions
        • References
      • Why are so many k-points needed in the transport direction in a device calculation?
      • Make Movies from QuantumATK Trajectory Files
        • Creating Animated GIF
        • Rotation Animator
        • Movie from Trajectory Files
      • Adding, Combining, and Modifying Classical Potentials
        • Introduction
        • Adding a New Classical Potential from Scratch
        • A Potential for Amorphous Oxides
        • Combining a Tersoff and a Lennard-Jones Potential
        • Intra- and Inter-Layer Cohesion in MoS2
      • Pymatgen in QuantumATK
        • Installation
        • Testing
        • Updating
      • The DFTB model in ATK-SE
        • Installing DFTB parameters
        • Testing the installation
        • Spin polarized calculations with DFTB
      • Reusing electrodes in device calculations
        • Separate scripts for electrodes and device
      • Initialize from a converged state
        • Introduction
        • Examples
      • Compute quantities from converged simulations
      • Restarting a stopped calculation
        • Saving the checkpoint file
        • Restarting the calculation from the checkpoint file
      • Accessing QuantumATK internal variables
        • Internal matrices accessible in QuantumATK
        • Multi-terminal conduction
        • Transmission projection
        • AC conductance
        • References
      • Slater-Koster tight-binding models in ATK-SE
        • Introduction
        • Onsite matrix element
        • Offsite matrix elements
        • Defining the full Slater-Koster table
        • Silicon band structure
        • Adding hydrogen
        • Band gaps of passivated silicon nanowires
        • References
      • Electronic structure of NiO with DFT+U
        • Introduction
        • The electronic structure of NiO calculated with DFT
        • DFT+U calculation for the NiO crystal
        • References
      • Linear response current – how to compute it, and why it is often not a good idea
      • Introducing the QuantumATK plane-wave DFT calculator
        • Introduction
      • Builder Manual
        • Introduction
        • Importing, adding, and exporting structures
        • Mouse and key operations
        • Using the Move Tool
        • Overview of built-in plugins
        • Managing plugins using the AddOn Manager
      • Using the Crystal Builder
        • Introduction
        • Crystal structure of black phosphorus
        • Phosphorene and its bandstructure
        • References
      • Job Manager for local execution of QuantumATK scripts
        • Execute QuantumATK simualtions via the Job Manager
        • Serial execution
        • Threading
        • MPI parallelization
        • Machine Manager
      • Job Manager for remote execution of QuantumATK scripts
        • A single remote machine
        • Custom job settings
        • Debugging
        • Adding several remote machines
      • SSH keys
        • Create a pair of public and private SSH keys
        • Add the public key to authorized SSH keys on the remote cluster
        • Test the password-less SSH connection
      • Make CIF File Defining Crystal Structure
        • Description and Need
        • Example
      • How to create AddOns for QuantumATK
        • Basic Structure of a AddOn Module
        • Example 1: A Plugin to Read XYZ Files
        • Example 2: Plugin to export configurations
        • Example 3: Plugin to read electron densities
        • How to install AddOns
        • Test the NPZFilters AddOn
      • Import/Export files in QuantumATK
        • Stash Items
        • Add from Database
        • Add from Files
        • Add from Plugins
        • Save and Export Structures
      • Import XYZ, CIF, CAR, VASP Files in QuantumATK
        • Drag and Drop
        • Importing structures in a script
      • Export XYZ, CIF, CAR, VASP Files in QuantumATK
        • Built-in export filters
        • Exporting from scripts
      • Manage 3D View and Select Atoms
        • Rotations
        • Reset View
        • Zoom
        • Drag
        • Camera and View Planes
        • Selections
      • POV-Ray images from QuantumATK
        • Elementary functionalities through an example
        • Examining the .pov file
        • Exporting pictures with POV-Ray
      • Converting lattices: Rhombohedral to hexagonal and back
        • Conversion between hP and hR representations
        • Converting hP supercell to hR primitive cell
        • Crystal classifications
        • References
      • Simple carbon nanotube device
        • Build and geometry optimize a short CNT
        • CNT device configuration
      • Build a graphene nanoribbon transistor
        • Small nanoribbon transistor
        • A longer nanoribbon transistor
      • Commensurate supercells for rotated graphene layers
        • Additional rotated structures
        • References
      • Molecular builder
        • Ethanol molecule
        • Caffeine molecule
        • Going further
        • Export the Stash Configuration file
      • MoS2 Nanotubes
      • Nanosheet with a hole
      • Stone–Wales Defects in Nanotubes
        • Creating the defect and wrapping the tube
        • Optimizing the structure
        • Transmission spectrum
        • References
      • Exploring Graphene
        • Build a graphene sheet
        • Build a CNT
        • Transmission spectrum of a GNR
        • Twisted nanoribbon
        • Möbius nanoribbon
        • Buckling a graphene sheet
      • Building a molecular junction
        • Benzene to DTB: Building the molecule
        • Cleaving gold into two surfaces
        • Combining the molecule and the surfaces
        • Converting the central region to a device configuration
        • References
      • The VASP Scripter AddOn
        • Create the structure in QuantumATK
        • Export the structure to the VASP scripter
        • Setup tab
        • Accuracy tab
        • Electrons tab
        • Ions tab
        • Properties tab
        • Configuaration tab
        • Bandstructure tab
        • Custom Options tab
        • Generate VASP files
      • Using QuantumATK to work with Nudged Elastic Band calculations in VASP
        • Introduction
        • Creating the initial and final configurations
        • Setting up the VASP input for optimizing the bulk Pt
        • Creating and optimizing the end-points
        • Constructing the NEB path
        • Setting up the NEB calculation
        • Analyzing the results
        • References
      • Set up and analyze VASP calculations with QuantumATK
        • Setting up the configuration using QuantumATK
        • Use the VASP Scripter to set up the calculation
        • Analyzing the results
      • QuantumATK as GUI for Quantum ESPRESSO
        • Setting up a configuration using QuantumATK
        • Exporting a Quantum ESPRESSO input file
        • Adapting the input file
        • Running the ground state calculation
        • Analyzing results
        • More Quantum ESPRESSO calculations
      • Silicon bandstructure and DOS using QuantumATK and Quantum ESPRESSO
        • Bandstructure
        • Density of states
      • LAMMPS trajectories into QuantumATK
        • Preparing a LAMMPS script
        • Running LAMMPS
        • Importing to QuantumATK
        • Postprocessing LAMMPS trajectories
        • References
  • Webcasts
    • New QuantumATK Release R-2020.09
    • IBM Research & Synopsys: Alternative Metals for Advanced Logic Interconnects
    • Simulation of Polymers with QuantumATK
    • Simulation of Optical Properties with QuantumATK
    • DFT Simulations with QuantumATK
    • New QuantumATK Release P-2019.03
    • Relaxation of Electronic Devices and Interfaces
    • Solar-Cell Devices Including Temperature Effects
    • New Framework for IV Curve Simulations
    • New QuantumATK Release O-2018.06
    • Simulating the Phonon-Limited Electron Mobility of Materials
    • Electron-Phonon Scattering Effects in Large Scale Atomistic Device Simulations
    • New QuantumATK Release 2017
    • Introduction to Molecular Dynamics Simulations with QuantumATK-ForceField
    • Atomistic Simulation of Thermal Transport Across Interfaces
  • Manual
    • General
      • Introduction
      • New in QuantumATK R-2020.09
      • Installing and running the software
      • How to read this manual
    • Atomic-Scale Calculators
      • DFT: LCAO
        • Introduction
        • Background information
      • DFT: Plane Wave
        • Introduction
        • Background information
      • Semi Empirical
        • Introduction
        • Background information
        • Parameters
      • Force Field
        • Introduction
        • TremoloX
        • TremoloX potential classes
        • TremoloX potential parameter sets
        • ASAP potential parameter sets
      • NEGF: Device Calculators
        • Introduction
        • Device configuration
        • Non-equilibrium electron distribution
        • Effective potential
        • Total energy and forces
        • Transmission coefficient
        • Electrical current
        • References
      • Technical Notes
        • The Hartree Potential
        • Occupation Methods
        • Pseudopotentials and basis sets available in QuantumATK
        • Doping methods available in QuantumATK
        • Optical response functions
        • Hybrid Functionals
    • Python in QuantumATK
      • ATK-Python
        • Python packages in QuantumATK
        • Using NumPy with QuantumATK
        • Cloning of QuantumATK Python objects
        • Plotting using pylab
      • Physical quantities and units
        • Usage Examples
        • Units available in QuantumATK
      • Read and Write Support
        • HDF5 (Default File Format)
        • NetCDF
      • Metatext
      • Spin
        • Usage Example
        • Note about Spin.All
        • Note on Spin in low level interface functions
      • Python basics
        • Indentation
        • Comments
        • Importing modules
        • Lists
        • Tuples
        • Dictionaries
        • For-loops
        • Objects
        • Functions and arguments
    • QuantumATK Reference Manual
      • Geometry
        • Lattices
      • Calculators
        • Common Parameters
        • DFT Calculators
        • Semi-Empirical Calculator
        • Counterpoise Correction
        • Low level entities
      • Analysis
        • Common Analysis
        • Bulk Analysis
        • Device Analysis
      • Study
      • Dynamics and Optimization
        • Optimization
        • Molecular Dynamics
        • Surface Process Simulation
        • Monte Carlo
        • Constraints
        • MD Analysis
        • Image Interpolation Algorithms (NEB)
      • Polymers
        • Builders And Equilibration
        • Potentials
        • Analysis
      • Input and Output
      • Periodic Table
      • Utilities
      • Plot
        • Plot
      • Full QuantumATK package
        • QuantumATK
    • Sentaurus Materials Workbench Reference Manual
      • Introduction
      • Material specifications
      • Bandstructure calibration
      • Single defect specification and convergence studies
      • Band diagram extraction
      • Defect characterization and migration
        • Empirical potential calculation
        • Defect characterization
        • Defect migration
        • Diffusion in amorphous materials
        • Using defect characterization and migration values in Sentaurus Process
      • Multilayer Builder
      • GrainBoundaryScattering
      • Full SMW package
        • SMW
    • Sentaurus Materials Workbench Technical Descriptions
      • Operating with defect lists
        • Introduction
        • Defect lists usage
        • Defect list types
        • Directory names
        • Usage example
      • Chemical Potentials in Compound Materials
        • Heat of Formation
        • Specific Element-Rich Condition
        • Grand Thermodynamic Potential (GTP)
        • Summarized chemical potentials in the TiN example
      • Diffusivity calculation in amorphous materials
        • Procedure
        • Example: Carbon diffusivity in amorphous silicon
    • Atomic data
      • Element data
      • Built-in parameter sets in ATK-SE
        • Slater–Koster basis sets
        • Extended Hückel basis sets
  • Case Studies
    • Modeling metal–semiconductor contacts: The Ag–Si interface
      • Creating the device
        • Initial guesses for the interface structure
        • Electrode relaxation
        • Central region relaxation
        • Device relaxation
        • Fitting the TB09-MGGA c-parameter
        • Silicon doping and depletion layer length
      • Projected local density of states
      • Finite-bias calculations
        • Ideality factor
        • Schottky barrier
        • Spectral current
        • Summing up the results
      • Note on the variation of the current
      • References
    • Resistivity calculations using the MD-Landauer method
      • 1. Theory and numerical procedure
      • 2. Calculation setup
        • 2.1. Construction of the DeviceConfiguration
        • 2.2. Setup of the script
        • 2.3. Edit the python script
      • 3. Data analysis
        • 3.1. Transmission functions, conductance, and resistance
        • 3.2. Resistivity
      • References
    • Electron transport calculations with electron-phonon coupling included via the special thermal displacement method - STD-Landauer
      • Building the device
        • Finding the lattice constant of silicon
        • Building the pristine device
        • Applying the special thermal displacement to the atomic positions
      • Calculations
        • Calculations at 0 K and zero bias
        • Calculations at 300 K and zero bias
        • Calculations at finite bias
        • Lowest Order Expansion (LOE) Calculations
        • Computational timings
      • Analysis and discussion
        • The STD method compared to the LOE method
      • References
    • Semiconductor Whitepapers
      • Introduction
      • Methods
        • HSE
        • Nomenclature
        • Pseudopotential Projector-Shift
      • Silicon
        • Summary
        • Convergence
        • Timing
        • Results
        • Appendix
        • References
      • Germanium
        • Summary
        • Convergence
        • Timing
        • Results
        • Appendix
      • Si0.5Ge0.5
        • Summary
        • Convergence
        • Timing
        • Results
        • Appendix
        • References
    • Posters
  • Guides
    • Installation guide
      • Introduction
      • Access to SolvNet
      • Access to a license server
      • Downloading, installing and configuring QuantumATK
        • Downloading QuantumATK
        • Installing QuantumATK
        • Configuring the QuantumATK license
    • Determining the host ID of your machine
    • The Builder Console
      • Special variables
        • The active configuration
        • The selected atoms
        • The active camera
        • The Builder Stash
      • Console Snippets
      • The console in Builder plugin development
      • Questions
    • Using Templates in QuantumATK
      • Quick access to Templates
      • Manage Templates
      • Import/Export Templates
  • Scientific Publications
    • Referencing
    • List of Publications
  • Technical Notes
    • The Interface Builder in QuantumATK
      • Select Surface Cells
      • Shift Surfaces
    • NEGF Convergence Guide
      • Introduction
        • Troubleshooting steps
      • Zero-bias NEGF calculations
        • 1. Increase the length of the device central region
        • 2. Increase the length of the electrodes
        • 3. Check that the boundary conditions are correct
        • 4. Increase the number of k-points
        • 5. Use the EquivalentBulk method for the initial density
        • 6. Increase the electron temperature
        • 7. Improve the accuracy of the contour integral
        • 8. Try a different Poisson solver
        • 9. Increase the density mesh cut-off energy
      • Finite-bias NEGF calculations
        • 1. Always restart from a converged calculation
      • SCF iteration control parameters
        • 1. Maximum steps
        • 2. Pulay mixing
        • 3. Tolerance
      • Contact support
    • Spin-Polarized NEGF Convergence Guide
      • Systems investigated
        • Computational parameters for the reference Fe|MgO structure
        • Computational parameters for the Fe|MgO|Fe device
      • Calculating the self-energy matrix
        • 1. Method overview
        • 2. Practical methods
      • Zero and finite-bias convergence: mixing parameters
      • Zero and finite-bias convergence: electrode-length and k-point sampling
      • Electrode validator
      • Contact support
    • Noncollinear spins and spin transfer torque in devices
    • Parallelization of QuantumATK calculations
      • Unit-of-work
      • Parallelization levels in QuantumATK
        • MPI parallelization
        • Threading
        • ATK-DFT
      • Bulk calculations
        • Processes per k-point
        • Exercise I: Non-default number of processes per k-point
        • Speed-up and peak memory reduction
      • NEGF calculations
        • Automatic distribution of contour points
        • Processes per contour point
        • Speedup in a device calculation
      • Examples of multi-level parallelisms in QuantumATK
        • Nudged elastic band calculations
        • I-V curve calculations
        • Adaptive Kinetic Monte Carlo simulations
        • Crystal Structure Prediction
      • References
    • Performance troubleshooting guide
      • Running out of memory?
      • Want to make it run faster?
    • Study objects
      • Restart example
  • FAQ
    • Software Usage
      • Slow Startup of QuantumATK NanoLab
      • Log file Time Stamps in Windows Under Cygwin
      • Bonds Between Some Atoms are Missing
      • Difference Between Pseudopotentials and Basis Sets in QuantumATK
      • Importing Atomic Coordinates from Other Software in NanoLab
      • Running QuantumATK Using SLURM and MPICH (3.1.1+)
      • Running QuantumATK Under Cray MPI (aprun)
    • Technical
      • System Requirements for QuantumATK R-2020.09
        • Detailed Requirements
        • Specific Platform Requirements
      • System Requirements for QuantumATK Q-2019.12
      • System Requirements for QuantumATK P-2019.03
      • System Requirements for QuantumATK O-2018.06
      • Running QuantumATK on a Virtual Machine
      • How Many Atoms Can Be Computed with QuantumATK
      • QuantumATK Parallelization
      • Extremely Dark Atoms for VNL-2016 on Windows 7
      • How Come the ATK-VNL Package is Larger than a Typical DFT Code
    • Error Messages
      • UnicodeDecodeError: ASCII Codec Can’t Decode
      • atkpython.exe Stopped Working
      • License Error: (Internal: 147 Feature: ATKDFT)
      • License Error: Access Denied
      • Error Installing VC++ Runtime
      • ATKError: Inverse(DZMatrix const&) : Could Not LU Factorize!
      • ATKError: Bad Allocation
      • There Is No Licenses Served by the License Server
      • locale.Error: Unsupported Locale Setting
      • ERROR: ‘dict’ object has no attribute ‘len’
      • Can’t Allocate Memory for Array
      • Not Enough Space to Allocate vblock
      • Killed by Signal 9
      • Pulay Mixing Inversion Failed. Using Only Last Step
      • Runtime Terminates an Application
      • Import error:.../_path.so: undefined symbol: _ZNSs4_Rep20_S_empty_rep_storageE
      • ImportError: No Module Named
      • White Builder or Viewer Background
      • Failure to Initialize
      • WARNING: Feature Not Licensed to Work on a Virtual Machine and is Ignored
      • libGL Warning: 3D Driver Claims to Not Support 0x5b
      • (Err:20) Feature Not Allowed to Run on a Virtual Machine
      • (Err:19) Feature Not Allowed to Run on Terminal Server Clients
      • (Err: 10) Hostid Does Not Match License
      • (Err: 6) Unable to Read File
      • glibc Detected ... Corrupted Double-Linked List
      • (Err: 15) Unable to Connect to License Server
      • (Err: 35) Feature Does Not Support Network Licensing
      • ATKError: St9bad_alloc
      • ATKError: Exceeded Maximum Number of Self-Consistent Iterations
      • ImportError: Gtk* Backend Requires pygtk to Be Installed
      • locale::facet::_S_create_c_locale Name Not Valid
      • The Computed TB09 meta-GGA Exchange-Correlation Potential Diverged ...
      • Could Not Find or Load the Qt Platform Plugin “xcb”
      • (Err: 51) Unable to Use Network License as a Local License
      • Back Engine Exception : Unable to Start License System
    • Licensing
      • Cannot Run QuantumATK P-2019.03
      • Basic License Troubleshooting
      • Advanced License Troubleshooting
      • Maintenance, Updates and Support
      • Floating or Nodelocked Licenses
      • NLLicenseError: Unable to Start the License System (Error Code 61)
      • License and QuantumATK Upgrading
      • Updating the License File
      • License Server Cannot Be Started
      • HostID Does Not Match License (Error Code 10)
      • SSH License Server Access
      • License for QuantumATK Parallel Run
      • Restricting Access to a License Server
    • Installation Issues
      • QuantumATK Slow Start on Windows
      • libjpeg.so.62: Cannot Open Shared Object File: No Such File or Directory
      • “Side-by-Side” Configuration Error
      • QuantumATK Segmentation Fault (Linux)
      • Command Not Found (Linux)
      • Cannot Start QuantumATK From the Desktop Icon
      • libpng12.so.0: Cannot Open Shared Object File
      • libGL.so: Cannot Open Shared Object File
      • Cannot Restore Segment Prot After Reloc: Permission Denied
      • “Send To” Button Stops Working on Ubuntu
      • QuantumATK Problems on Ubuntu
      • GLIBC_2.4 Not Found
      • Firewall Issues
      • No Module Named ipy_user_conf
      • Segmentation Fault QuantumATK Closes Down When Clicking an Icon
      • libGLU.so.1: Cannot Open Shared Object File
      • libgomp.so.1: Cannot Open Shared Object File: No Such File or Directory
      • ImportError: DLL Load Failed: The Specified Procedure Could Not Be Found
      • Could Not Find or Load the Qt Platform Plugin “xcb”
      • Interactive Mode Prints Black on Black in Windows 8 and 10 (QuantumATK 2015)
    • References
      • Citing QuantumATK
      • Finding Background Information About the Methods Used in QuantumATK
      • List of Papers Published Using QuantumATK
    • AddOns
      • Getting Addons
      • Creating AddOns
      • What Is an AddOn
      • Installing AddOn to a Local QuantumATK Installation
      • Install AddOn as QuantumATK Administrator
      • Failing AddOn Installation
      • AddOns (Location) Folders
      • Check Installed AddOns
      • Updating AddOns
      • Disabling or Uninstalling AddOns
 
QuantumATK
  •   Try it!
  •   QuantumATK
  •   Contact
  • Docs »
  • Manual »
  • Sentaurus Materials Workbench Reference Manual »
  • SMW

SMW¶

Classes¶

  • AmorphousLayer
  • AtomicChemicalPotential
  • AtomicChemicalPotentialList
  • ChargedPointDefect
  • CrystalLayer
  • DefectCluster
  • DefectClusterList
  • DefectPairList
  • DiffusionParameters
  • ExtrapolationScheme
  • GrainBoundaryScattering
  • HarmonicChargedPointDefect
  • ImageStressCorrection
  • Interstitial
  • InterstitialList
  • MaterialSpecifications
  • MaterialSpecificationsDatabase
  • ModelChargeCorrection
  • MolecularDynamicsMeltQuench
  • MultilayerBuilder
  • OptimizeTransitionPathParameters
  • SentaurusBandstructureCalibration
  • SentaurusProcessChargedReact
  • SentaurusProcessFullChargedReact
  • SentaurusProcessKMC
  • SentaurusSlabKdotPmodel
  • SentaurusWireEffectiveMassModel
  • SentaurusWireKdotPmodel
  • Slab
  • SlabBandstructure
  • SplitInterstitial
  • SplitInterstitialList
  • Substitutional
  • SubstitutionalList
  • TimeStampedForceBiasMonteCarloMeltQuench
  • TransitionPath
  • TransitionPathList
  • Vacancy
  • VacancyList
  • VacuumLayer
  • VoronoiFaces
  • VoronoiVertices
  • VoronoiVerticesAndFaces
  • Wire
  • WireBandstructure

Functions¶

  • amorphize
  • displayDefectCharacterization
  • grandThermodynamicPotential
  • monteCarloDiffusivityCalculation
  • updateAllDefectsAndTransitions
  • writeSentaurusParameters

Next Previous

© Copyright 2020 Synopsys, Inc. All Rights Reserved.