logo
QuantumATK
  • Home/
  • Home - QuantumATK X-2025.06 Documentation
print feedback
  • Getting started with QuantumATK
    • Installation Guide
      • Access to SolvNet
      • Access to a License Server
      • Linux only: Download and use Synopsys Installer
      • Downloading, Installing and Configuring QuantumATK
        • Downloading QuantumATK
        • Installing QuantumATK
        • Configuring the QuantumATK License
      • System Requirements
      • Using QuantumATK from the command line
      • Troubleshooting
        • Slow Startup on Windows
        • libGL.so: Cannot Open Shared Object File
        • libGLU.so.1: Cannot Open Shared Object File
        • Could Not Find or Load the Qt Platform Plugin “xcb”
        • ATKError: Exceeded Maximum Number of Self-Consistent Iterations
        • Failure to Initialize
        • ImportError: No Module Named
        • Pulay Mixing Inversion Failed. Using Only Last Step
        • Why are so many k-points needed in the transport direction in a device calculation?
        • ATKError: St9bad_alloc
        • Runtime Terminates an Application
        • Killed by Signal 9
        • Not Enough Space to Allocate vblock
        • Can’t Allocate Memory for Array
        • ATKError: Bad Allocation
        • ATKError: Inverse(DZMatrix const&) : Could Not LU Factorize!
        • Cannot Run QuantumATK P-2019.03
        • Network or Nodelocked Licenses
        • License for QuantumATK Parallel Run
        • Basic License Troubleshooting
        • Advanced License Troubleshooting
        • Maintenance, Updates and Support
        • License and QuantumATK Upgrading
        • Updating the License File
        • License Server Cannot Be Started
        • SSH License Server Access
        • Restricting Access to a License Server
    • Introductory Tutorials
      • Geometry Optimization
        • Prerequisites
        • Importing Structures from the NanoLab Database
        • Setting up Geometry Optimization Workflow
        • References
      • Band Structure, Projected Density of States and Effective Mass Calculations
        • Prerequisites
        • Setting up Band Structure Calculation Workflow
        • Analyzing Band Structure Results
        • Restarting to Obtain Projected Density of States
        • Analyzing Projected Density of State Results
        • Calculation of Effective Masses
        • References
      • Optical Property Calculations
        • Prerequisites
        • Setting up an Optical Property Calculation Workflow
        • Analyzing Results
        • Outlook
        • References
      • Molecular Dynamics Simulations for Generating Amorphous Structures
        • Prerequisites
        • Setting-Up Molecular Dynamics Simulations
        • Analyzing Molecular Dynamics Simulations
        • References
      • NEGF Simulations of Electron Transport in Devices
        • Prerequisites
        • Building Si p-n Junction Device
        • Setting up Electron Transport Simulations for the Si p-n Junction at 0 V Bias
        • Analyzing Results at 0 V Bias
        • Setting up Electron Transport Simulations for the Si p-n Junction at Finite Bias
        • Analyzing Results at Finite Bias
        • Summary and Outlook
        • References
    • Feature List
    • Referencing QuantumATK
  • NanoLab Guides
    • Overview of NanoLab
      • Typical workflow
      • Create atomistic structure
      • Set up calculation
      • Run a job
      • Analyze results
      • What’s next
    • Projects in NanoLab
    • Organize your data in the Nanolab data view
      • The Nanolab Data View
      • 1. The File Browser
      • 2. The Search Field
        • The advanced SQL search
        • The Query Builder
      • 3. The Data Table
        • The Quantum ID (qid)
        • Unpack
        • Analyzers and Preferences
      • 4. The Data Preview
        • The Keywords
      • 5. The Data Filters
      • 6. The Data Sources
        • Data Inspectors
    • Builder Manual
      • Introduction
        • Layout and basic operations
      • Importing, adding, and exporting structures
        • Adding an already existing structure
        • Creating a new structure
        • Saving and exporting structures
        • Sending the structure to other QuantumATK tools
      • Mouse and key operations
        • Controlling the 3D view
        • Selection
        • Deleting atoms
        • Undo
      • Using the Move Tool
        • Selection control
        • Translation
        • Advanced Move
      • Overview of built-in Builder plugins
        • Builder Toolbar plugins
        • Builder Panelbar plugins
        • Custom builder plugins
        • Supported file formats for import and export
        • Third-party plugins
      • Managing plugins using the AddOn Manager
    • Workflows Manual
      • Introduction to the Workflow Builder
        • What is the Workflow Builder?
        • The Workflow Builder overview
        • What is a workflow block and how to edit it
        • Creating a simple workflow
        • Re-running a workflow
        • Workflow with multiple branches
        • Workflow with multiple configurations
        • Block of blocks
        • Common operations in the Workflow Builder
      • Using Tables in the Workflow Builder
        • How to collect data in a table
        • How to collect data in a table using an Iteration block
        • How to extract data from a table using a TableIteration block
      • Introduction to Array Jobs
        • How to build an array script in the Workflow Builder
        • How to submit an array script
    • Jobs manual
      • Job Manager for local execution of QuantumATK scripts
        • Execute QuantumATK simulations via the Job Manager
        • Serial execution
        • Threading
        • MPI parallelization
        • Adding Computers
      • Job Manager for remote execution of QuantumATK scripts
        • A single remote machine
        • Custom job settings
        • Debugging
        • Adding several remote machines
    • Plots
      • Plot Gallery
        • Bars
        • Contour
        • Density
        • Density For Weighted Lines
        • Filled Area
        • Line And Annotations
        • Line With Fit
        • Linegroup
        • Multiple Axes
        • Rolling Average
        • Scatter And Bars
        • Transformed Line
        • Working with Plots in NanoLab
    • Manage 3D View and Select Atoms
      • Rotations
      • Reset View
      • Zoom
      • Drag
      • Camera and View Planes
      • Selections
    • Importing and exporting files
      • Import/Export files in QuantumATK
        • Stash Items
        • Add from Database
        • Add from Files
        • Add from Plugins
        • Save and Export Structures
      • Export XYZ, CIF, CAR, VASP Files in QuantumATK
        • Built-in export filters
        • Exporting from scripts
      • Import XYZ, CIF, CAR, VASP Files in QuantumATK
        • Drag and Drop
        • Importing structures in a script
    • Molecular builder
      • Ethanol molecule
      • Caffeine molecule
      • Going further
      • Export the Stash Configuration file
    • Using the Crystal Builder
      • Introduction
      • Crystal structure of black phosphorus
      • Phosphorene and its bandstructure
        • Bandstructure
      • References
    • The Builder Console
      • Special variables
        • The active configuration
        • The selected atoms
        • The active camera
        • The Builder Stash
      • Console Snippets
      • The console in Builder plugin development
      • Questions
    • AddOns
      • Creating AddOns
      • Disabling or Uninstalling AddOns
      • Getting Addons
      • Installing AddOn
        • Install AddOns as limited access users
        • Installing AddOns on the local system
      • Failing AddOn Installation
      • AddOns Location
      • Updating AddOns
      • What Is an AddOn
      • Check Installed AddOns
  • Tutorials
    • New or Updated
      • Training and Finetuning of MACE models
        • Training a MACE model from scratch
        • Naive Finetuning of foundation MACE models
        • Multihead Finetuning of foundation MACE models
        • Small study with additional models trained from scratch
        • Validation of trained models
        • Impact of important parameters
        • General remarks
        • Loading custom MACE models into QuantumATK
        • Summary
        • References
      • 2D Database and potentials
        • Importing a Structure from the 2D Materials Database
        • Creating and Setting a Calculator from a 2D Potential Set
        • Phonon Bandstructure calculation
        • References
      • Moment Tensor Potential (MTP) Training for Crystal and Amorphous Structures
        • Prerequisites
        • Overview of the MTP Training Workflow
        • Crystal Training Data
        • Amorphous Active Learning
        • Final MTP Fitting
        • Submitting the MTP Training Calculation
        • Analyzing MTP Training Results
        • MTP Validation for Crystals
        • MTP Validation for Amorphous
        • Summary and Outlook
        • References
      • MRAM workflow in QuantumATK: Study of STT-MRAM free layer stability
        • Video
        • Introduction
        • Workflow for calculating the free layer stability in a STT-MRAM MTJ structure
        • Vampire
        • References
      • Generating A Magnetoresistive RAM (MRAM) Stack using the MRAM-Builder
        • Introduction
        • Workflow to generate the MgO-FeCo-MgO MRAM structure
      • Generating A High-k Metal Gate Stack Using the HKMG-Builder
        • Introduction
        • Workflow
      • How to select the right calculator
        • The Calculator types
        • The DFT Calculators (LCAO and Plane Wave)
        • The Semi Empirical Calculator
        • The Force Field Calculator
      • Using Thermochemistry Analyzer to Compare Chemical Reactions
        • Background
        • Getting started
        • Understanding the Thermochemistry Analyzer GUI
        • Example: Temperature Window for Thermal Atomic Layer Etching of HfO2 and ZrO2
        • General Uses
      • Electronic Properties of Phase Change Material Ge2Sb2Te5
        • Geometry
        • Bandgap Calculation
        • Lattice Parameters
        • Cohesive Energies
        • Neutral Vacancy Formation Energies
        • Total DOS With and Without Ge Vacancy
      • STM simulations of tunneling anisotropic magneto resistance (TAMR)
        • Introduction
        • Setting up the 2LFe/W(110) structure
        • Local Density of States calculations
        • Analyzing the results
        • Co adatom on 2LFe/W(110)
        • COSMICS project
        • References
      • Bulk Magnetic Anisotropy Energy
        • Introduction
        • Theory
        • MAE of FePt
        • TotalEnergy calculations
        • Convergence of results
        • COSMICS project
      • Magnetic Anisotropy Energy of Fe-MgO-Fe MTJ structure
        • Introduction
        • Fe-MgO-Fe MTJ structure
        • MagneticAnisotropyEnergy calculation
        • What causes the PMA?
        • COSMICS project
      • Heisenberg exchange coupling of iron and cobalt
        • Introduction
        • Theory
        • Setting up calculations
        • Analyzing the results
        • COSMICS project
        • References
      • Building an model of an epoxy thermoset material
        • Theory
        • Building the thermoset model
        • Analyzing the Thermoset Reaction
        • Conclusions
      • Analyzing the thermo-mechanical properties of a polymer material
        • Glass Transition Temperature
        • Young’s Modulus and Poisson Ratio
        • Conclusions
      • Generating A Moment Tensor Potential for HfO2 Using Active Learning
        • Background
        • Getting Started
        • Workflow
        • Step 1: Prepare Initial Reference Configurations
        • Step 2: Compute Reference Data and Setup Active Learning
        • Step 3: Find an MTP with Lowest Error
        • Validation MD Simulation
        • References
        • FAQ Section
      • Simulating Si Deposition using Silane
        • Background
        • Getting started
        • Step 1: Reference Calculations
        • Step 2: Adsorption and Dissociation of SiH4
        • Step 3: Formation and Desorption of H2
        • Conclusions
        • References
    • Semiconductors
      • Phonon-limited mobility in graphene using the Boltzmann transport equation
        • Geometry and electronic structure of graphene
        • Phonons in Graphene
        • Mobility of graphene
        • Convergence of q- and k-point sampling
        • Theory section
        • References
      • Effective mass of electrons in silicon
        • Introduction
        • Background
        • Set up the calculation
        • Analyze the results
        • Going further
        • References
      • Spin-orbit splitting of semiconductor band structures
        • Relavistic effects in Kohn-Sham DFT
        • Silicon band splitting with ATK-DFT
        • SO+MGGA band gap
        • GaAs band structure with ATK-SE and SO coupling
        • References
      • Silicon p-n junction
        • Silicon bulk: Slater-Koster vs DFT-MGGA
        • Silicon device
        • Analyzing the results
        • References
      • Optical Properties of Silicon
        • Introduction
        • Electronic structure and optical properties of silicon
        • References
      • NiSi2–Si interface
        • Create the NiSi2/Si device
        • Set-up the calculation for the undoped device
        • Dope the device
        • Analysis of the results
        • Finite-bias calculations
        • References
      • Bi2Se3 topological insulator
        • Build the Bi2Se3 crystal
        • Bi2Se3 bulk band structure
        • Bi2Se3 surface: Spin-orbit band structure
        • DOS analysis: Dirac cone finger print
        • Penetration depth of surface states
        • Fermi surface and spin directions
        • Topological Invariants
        • References
      • Effective band structure of random alloy InGaAs
        • Methodology
        • Band structures of InAs
        • In0.53Ga0.47As random alloy
        • Finite broadening
        • Final comments
        • References
      • Complex bandstructure of Si(100)
        • Background
        • Si(100) surface
        • Complex bandstructure calculation
        • Analysing the results
        • 3D and 2D visualizations
        • References
      • InAs p-i-n junction
        • Setting up the device geometry
        • Running the calculations
        • Defining the work function of the metal gate
        • Performing a gate scan
        • References
      • Inelastic current in a silicon p-n junction
        • Creating the silicon p-n junction
        • Transmission calculation without electron-phonon interactions
        • Transmission calculation with electron-phonon interactions
        • Speeding up the calculations
        • References
      • Elastic scattering, mean free path, mobility: Impurity scattering in a silicon nanowire
        • Introduction
        • Defected silicon nanowires
        • Elastic scattering mean free path
        • Fermi levels in doped nanowires
        • Doping dependent mobility
        • Summary and discussion
        • Appendix: Building the nanowires
        • References
      • Virtual Crystal Approximation for InGaAs random alloy simulations
        • Introduction
        • Setting up the VCA calculations for InxGa1-xAs
        • Analyzing the results for VCA with InxGa1-xAs
        • Calculating effective masses
        • Summary and discussion
        • References
      • DFT-1/2 and DFT-PPS density functional methods for electronic structure calculations
        • DFT-1/2 methods
        • DFT-PPS method
        • References
      • Electrical characteristics of devices using the IVCharacteristics study object
        • Prerequisites
        • Calculation and analysis of the \(\mathrm{I_{ds}-V_{gs}}\) curve for the FET on-state
        • Extending the range of the \(\mathrm{I_{ds}-V_{gs}}\) curve to the FET off-state
        • Analysis of the \(\mathrm{I_{ds}-V_{gs}}\) curve in the subthreshold region
        • Calculating the drain-induced barrier lowering
        • References
      • Formation energies and transition levels of charged defects
        • Procedure for calculating the formation energy
        • Setting up the calculation
        • Analyzing the results
        • Discussion and summary
        • Appendix
        • References
      • Introduction
      • Methods
        • HSE
        • Nomenclature
        • Pseudopotential Projector-Shift
      • Silicon
        • Summary
        • Convergence
        • Timing
        • Results
        • Appendix
        • References
      • Germanium
        • Summary
        • Convergence
        • Timing
        • Results
        • Appendix
      • Si0.5Ge0.5
        • Summary
        • Convergence
        • Timing
        • Results
        • Appendix
        • References
    • Batteries & Energy Storage
      • Li-air battery interface
        • Li2O2 bulk and surface structures
        • Li2CO3 bulk and surface structures
        • The Li2O2/Li2CO3 interface
        • References
      • Li-ion diffusion in LiFePO4 for battery applications
        • Import LiFePO4 bulk structure
        • Optimize LiFePO4 lattice parameters
        • Create the Li\(_{1-x}\)FePO4 structures
        • Optimize initial and final configurations
        • Create initial NEB trajectories
        • Optimize Li diffusion path
        • Calculate the reaction rates using harmonic transition state theory
        • References
      • Open-circuit voltage profile of a Li-S battery: ReaxFF molecular dynamics
        • Amorphous Li0.4S compound
        • Simulated annealing
        • Open-circuit voltage
        • Full open-circuit voltage profile
        • Radial distribution functions
        • References
      • Photocurrent in a silicon p-n junction
        • Device ground state
        • Photocurrent
        • References
    • Complex Interfaces
      • Building an interface between Ag(100) and Au(111)
        • Import silver and gold crystals
        • Building the Ag(100) and Au(111) crystals
        • Building the interface
        • Building the device configuration
      • Advanced device relaxation - manual workflow
        • Introduction
        • Preparations
        • Electrode relaxation
        • Central region relaxation
        • 1DMIN optimization of the interface using 2-probe calculations
      • Relaxation of devices using the OptimizeDeviceConfiguration study object
        • Introduction
        • Unrelaxed Ag(100)|Ag(111) device
        • Set up and run the device geometry optimization
        • Relaxed device structures
        • Appendix
      • Atomic-scale capacitance
        • Build the parallel plate capacitor
        • Calculations
        • Analysis
        • Bias-dependent capacitance
        • Dielectric spacer material
      • Graphene–Nickel interface
        • Creating the structure
        • More configurations
      • Building a Si-Si3N4 Interface
        • Preparations: Two crystals
        • Building the interface
        • Final adjustment
        • Doubling down: Buried layer model
        • Interface as a device model
      • NiSi2–Si interface
        • Create the NiSi2/Si device
        • Set-up the calculation for the undoped device
        • Dope the device
        • Analysis of the results
        • Finite-bias calculations
        • References
      • Determination of low strain interfaces via geometric matching
        • Method description
        • Input and output description
        • Example 1: Lattice match between two bulk systems
        • Example 2: Lattice match between a bulk system with a predefined surface
        • References
      • Generating A High-k Metal Gate Stack Using the HKMG-Builder
        • Introduction
        • Workflow
      • Generating A Magnetoresistive RAM (MRAM) Stack using the MRAM-Builder
        • Introduction
        • Workflow to generate the MgO-FeCo-MgO MRAM structure
      • Modeling metal–semiconductor contacts: The Ag–Si interface
        • Creating the device
        • Projected local density of states
        • Finite-bias calculations
        • Note on the variation of the current
        • References
      • Resistivity calculations using the MD-Landauer method
        • 1. Theory and numerical procedure
        • 2. Calculation setup
        • 3. Data analysis
        • References
      • Electron transport calculations with electron-phonon coupling included via the special thermal displacement method - STD-Landauer
        • Building the device
        • Calculations
        • Analysis and discussion
        • References
    • 1D Nanostructures
      • Transport in graphene nanoribbons
        • Introduction
        • Band structure of 2D graphene
        • Band structure of an armchair ribbon
        • Transport properties of a zigzag nanoribbon
      • Transmission spectrum of a spin-polarized atomic chain
        • Building the 1D carbon chain
        • Spin-parallel transmission spectrum
        • Spin anti-parallel transmission spectrum
      • Introduction to noncollinear spin
        • From collinear to noncollinear spin
        • Getting started
        • Spin rotation of 120°
        • Analysis
        • Spin-orbit interactions
      • Carbon Nanotube Junctions
        • Setting up the geometry
      • Capping a carbon nanotube
        • Build an extended (5,5) carbon nanotube
        • Cut the fullerene in half
        • Capping the tube
        • Finalizing the geometry
      • Simple carbon nanotube device
        • Build and geometry optimize a short CNT
        • CNT device configuration
      • Thermoelectric effects in a CNT with isotope doping
        • CNT device with tags for 14C doping
        • Phonon transmission
        • Electron transmission
        • Thermoelectric transport properties
        • References
      • Graphene nanoribbon device: Electric properties
        • Electron transmission spectrum
        • Effect of the Gate Potential
        • I–V characteristics
        • When is the linear response approximation valid?
        • Further analysis with ATK-SE
        • Temperature dependent conductance
        • Comparison to results for a longer device
        • References
      • Silicon nanowire field-effect transistor
        • Introduction
        • Band structure of a Si(100) nanowire
        • Setting up and running the calculations
        • Si(100) nanowire FET device
        • Zero gate voltage calculation
      • Exploring Graphene
        • Build a graphene sheet
        • Build a CNT
        • Transmission spectrum of a GNR
        • Twisted nanoribbon
        • Möbius nanoribbon
        • Buckling a graphene sheet
      • Elastic scattering, mean free path, mobility: Impurity scattering in a silicon nanowire
        • Introduction
        • Defected silicon nanowires
        • Elastic scattering mean free path
        • Fermi levels in doped nanowires
        • Doping dependent mobility
        • Summary and discussion
        • Appendix: Building the nanowires
        • References
    • 2D Materials
      • Meta-GGA and 2D confined InAs
        • TB09 meta-GGA
        • Bulk InAs band structure with TB09 meta-GGA
        • Setting up and passivating an InAs slab
        • Band structure with default hydrogen atoms
        • Analyzing the results
        • Passivation using pseudo-hydrogen
        • Results
        • Passivation using compensation charges
        • Results
        • Non-parabolicity in confined structures
        • Nanowire band structure
        • References
      • Opening a band gap in silicene and bilayer graphene with an electric field
        • Bilayer graphene
        • Silicene
        • References
        • More reading
      • Commensurate supercells for rotated graphene layers
        • Additional rotated structures
        • References
      • Spin-dependent Bloch states in graphene nanoribbons
        • Band structure of a zigzag nanoribbon
        • Bloch states
        • Introducing spin
        • Electron density and Mulliken populations
        • References
      • Exploring Graphene
        • Build a graphene sheet
        • Build a CNT
        • Transmission spectrum of a GNR
        • Twisted nanoribbon
        • Möbius nanoribbon
        • Buckling a graphene sheet
      • 2D Database and potentials
        • Importing a Structure from the 2D Materials Database
        • Creating and Setting a Calculator from a 2D Potential Set
        • Phonon Bandstructure calculation
        • References
    • Phonons & Thermal Transport
      • Calculating and using Dynamical Matrix
        • Prerequisites
        • Create the Workflow
        • LCAOCalculator Settings
        • Lattice optimization Settings
        • Dynamical matrix Settings
        • Running the calculation
        • Analyzing the results
        • Speeding up the calculation with ForceFields
      • Vibrational modes and Vibration Visualizer
        • MoS2 monolayer
        • Nanophononic metamaterials
      • Phonons, Bandstructure and Thermoelectrics
        • Introduction
        • Phonon Bandstructure of a Graphene Nanoribbon
        • Analyzing the Results
        • Algorithmic Details of the Phonon Calculator
        • Calculating Electrical and Heat Transport for a Graphene Nanoribbon
      • Phonon-limited mobility in graphene using the Boltzmann transport equation
        • Geometry and electronic structure of graphene
        • Phonons in Graphene
        • Mobility of graphene
        • Convergence of q- and k-point sampling
        • Theory section
        • References
      • Thermoelectric effects in a CNT with isotope doping
        • CNT device with tags for 14C doping
        • Phonon transmission
        • Electron transmission
        • Thermoelectric transport properties
        • References
      • Inelastic Electron Spectroscopy of an H2 molecule placed between 1D Au chains
        • Introduction
        • Device setup
        • Calculation of IETS
        • Analysis
        • References
      • Using Thermochemistry Analyzer to Compare Chemical Reactions
        • Background
        • Getting started
        • Understanding the Thermochemistry Analyzer GUI
        • Example: Temperature Window for Thermal Atomic Layer Etching of HfO2 and ZrO2
        • General Uses
      • Interfacial thermal conductance
        • Introduction
        • Reverse non-equilibrium molecular dynamics (RNEMD)
        • Non-equilibrium Green’s function method
        • References
    • Molecular Dynamics
      • How to Setup Basic Molecular Dynamics Simulations
        • Pre-requisites
        • NVE Simulations
        • NVT Simulations
        • NPT Simulations
        • Conclusion
      • Simulating Thin Film Growth via Vapor Deposition
        • Introduction
        • Simulation Strategies
        • Preparing the System
        • Setting up the Deposition Simulation
        • Running the Simulation
        • General Remarks
      • Simulating Si Deposition using Silane
        • Background
        • Getting started
        • Step 1: Reference Calculations
        • Step 2: Adsorption and Dissociation of SiH4
        • Step 3: Formation and Desorption of H2
        • Conclusions
        • References
      • Simulating Ion Bombardment on Graphene Sheets
        • Setting up the Graphene Sheet:
        • Adding a Bombardment Atom
        • Setting up the Simulation
        • Modifying the Script
        • References
      • Uniaxial and Biaxial Stress in Silicon
        • Introduction
        • Uniaxial Stress
        • Biaxial Stress
      • Adding, Combining, and Modifying Classical Potentials
        • Introduction
        • Adding a New Classical Potential from Scratch
        • A Potential for Amorphous Oxides
        • Combining a Tersoff and a Lennard-Jones Potential
        • Intra- and Inter-Layer Cohesion in MoS2
      • Generating Amorphous Structures
        • Introduction
        • Amorphous Structure Generation with Classical MD Simulations
        • Refining Amorphous Structures
        • Creating Crystal/Amorphous Interfaces
        • Further Examples
      • Young’s modulus of a CNT with a defect
        • CNT bulk configuration
        • Configuring the MD simulation
        • Adding Python hooks
        • Computing Young’s modulus
        • Visualize and analyse the results
        • References
      • Interfacial thermal conductance
        • Introduction
        • Reverse non-equilibrium molecular dynamics (RNEMD)
        • Non-equilibrium Green’s function method
        • References
      • Diffusion in Liquids from Molecular Dynamics Simulations
        • Theory
        • Computational Procedure
        • Analysis
      • Simulating a creep experiment of polycrystalline copper
        • Installing the polycrystal builder plugin
        • Building the polycrystalline cell
        • Analyzing the grain structure
        • Setting up the creep simulation
        • Running the simulation
        • Analyzing the results
        • Outlook
        • References
      • Metadynamics Simulation of Cu Vacancy Diffusion on Cu(111) - Using PLUMED
        • Introduction
        • Theoretical Background
        • Metadynamics Simulation of Cu Vacancy on Cu(111)
        • References
      • Open-circuit voltage profile of a Li-S battery: ReaxFF molecular dynamics
        • Amorphous Li0.4S compound
        • Simulated annealing
        • Open-circuit voltage
        • Full open-circuit voltage profile
        • Radial distribution functions
        • References
      • Viscosity in liquids from molecular dynamics simulations
        • Theory
        • Computational procedure
        • Analyzing the results
        • Extending the results
      • Building an model of an epoxy thermoset material
        • Theory
        • Building the thermoset model
        • Analyzing the Thermoset Reaction
        • Conclusions
      • Analyzing the thermo-mechanical properties of a polymer material
        • Glass Transition Temperature
        • Young’s Modulus and Poisson Ratio
        • Conclusions
      • Moment Tensor Potential (MTP) Training for Crystal and Amorphous Structures
        • Prerequisites
        • Overview of the MTP Training Workflow
        • Crystal Training Data
        • Amorphous Active Learning
        • Final MTP Fitting
        • Submitting the MTP Training Calculation
        • Analyzing MTP Training Results
        • MTP Validation for Crystals
        • MTP Validation for Amorphous
        • Summary and Outlook
        • References
      • Generating A Moment Tensor Potential for HfO2 Using Active Learning
        • Background
        • Getting Started
        • Workflow
        • Step 1: Prepare Initial Reference Configurations
        • Step 2: Compute Reference Data and Setup Active Learning
        • Step 3: Find an MTP with Lowest Error
        • Validation MD Simulation
        • References
        • FAQ Section
      • Training and Finetuning of MACE models
        • Training a MACE model from scratch
        • Naive Finetuning of foundation MACE models
        • Multihead Finetuning of foundation MACE models
        • Small study with additional models trained from scratch
        • Validation of trained models
        • Impact of important parameters
        • General remarks
        • Loading custom MACE models into QuantumATK
        • Summary
        • References
    • Molecular Electronics
      • Building molecule–surface systems: Benzene on Au(111)
        • Summary of workflow
        • Detailed instructions
        • References
      • Building a molecular junction
        • Benzene to DTB: Building the molecule
        • Cleaving gold into two surfaces
        • Combining the molecule and the surfaces
        • Converting the central region to a device configuration
        • References
      • Molecular Device
        • Zero-bias calculation
        • Analysis of the zero-bias results
        • I-V characteristics
        • References
      • Inelastic Electron Spectroscopy of an H2 molecule placed between 1D Au chains
        • Introduction
        • Device setup
        • Calculation of IETS
        • Analysis
        • References
    • Spintronics
      • Spin Transfer Torque
        • Introduction
        • Getting Started
        • Calculate the STT
        • Angle Dependence
        • References
      • Transmission spectrum of a spin-polarized atomic chain
        • Building the 1D carbon chain
        • Spin-parallel transmission spectrum
        • Spin anti-parallel transmission spectrum
      • Introduction to noncollinear spin
        • From collinear to noncollinear spin
        • Getting started
        • Spin rotation of 120°
        • Analysis
        • Spin-orbit interactions
      • Spin transport in magnetic tunnel junctions
        • Introduction
        • Getting started
        • Parallel spin
        • Anti-parallel spin
        • Tunneling magnetoresistance
        • Adaptive k-point grid
        • Spin-transfer torque
        • Relaxing the device central region
        • References
      • Relativistic effects in bulk gold
        • GGA band structure
        • Spin-orbit GGA band structure
        • References
      • Spin-orbit splitting of semiconductor band structures
        • Relavistic effects in Kohn-Sham DFT
        • Silicon band splitting with ATK-DFT
        • SO+MGGA band gap
        • GaAs band structure with ATK-SE and SO coupling
        • References
      • Bi2Se3 topological insulator
        • Build the Bi2Se3 crystal
        • Bi2Se3 bulk band structure
        • Bi2Se3 surface: Spin-orbit band structure
        • DOS analysis: Dirac cone finger print
        • Penetration depth of surface states
        • Fermi surface and spin directions
        • Topological Invariants
        • References
      • Noncollinear calculations for metallic nanowires
        • Building the device
        • Setting up the collinear calculation and analyzing the results
        • Setting up the noncollinear calculation
        • Analyzing the results
        • Including spin-orbit coupling in noncollinear calculations
        • References
      • Electronic structure of NiO with DFT+U
        • Introduction
        • The electronic structure of NiO calculated with DFT
        • DFT+U calculation for the NiO crystal
        • References
      • Bulk Magnetic Anisotropy Energy
        • Introduction
        • Theory
        • MAE of FePt
        • TotalEnergy calculations
        • Convergence of results
        • COSMICS project
      • Magnetic Anisotropy Energy of Fe-MgO-Fe MTJ structure
        • Introduction
        • Fe-MgO-Fe MTJ structure
        • MagneticAnisotropyEnergy calculation
        • What causes the PMA?
        • COSMICS project
      • STM simulations of tunneling anisotropic magneto resistance (TAMR)
        • Introduction
        • Setting up the 2LFe/W(110) structure
        • Local Density of States calculations
        • Analyzing the results
        • Co adatom on 2LFe/W(110)
        • COSMICS project
        • References
      • Heisenberg exchange coupling of iron and cobalt
        • Introduction
        • Theory
        • Setting up calculations
        • Analyzing the results
        • COSMICS project
        • References
      • Generating A Magnetoresistive RAM (MRAM) Stack using the MRAM-Builder
        • Introduction
        • Workflow to generate the MgO-FeCo-MgO MRAM structure
      • MRAM workflow in QuantumATK: Study of STT-MRAM free layer stability
        • Video
        • Introduction
        • Workflow for calculating the free layer stability in a STT-MRAM MTJ structure
        • Vampire
        • References
    • Materials, Surfaces and Chemistry
      • Polymer Builder
        • Procedure of the Polymer Builder
      • Green’s function surface calculations
        • Atomistic models of a surface
        • NEGF calculation with a single electrode
        • Work function of Ag(100)
        • Convergence wrt. metal layers
      • Polarization
        • Introduction
        • Modern theory of polarization
        • Spontaneous polarization of ferroelectric BaTiO3
        • References
      • Vibrational modes and Vibration Visualizer
        • MoS2 monolayer
        • Nanophononic metamaterials
      • Visualize the LUMO state of a water molecule
        • Building the molecule
        • Calculating the LUMO state
      • How to calculate reaction barriers using the Nudged Elastic Band (NEB) method
        • Create the initial and final states for the NEB
        • Set up and run the NEB calculations
        • Analyze the results
        • Summary
        • References
      • Ammonia inversion reaction barrier using DFTB and NEB
        • Setting up the NEB object
        • Performing the NEB simulation
        • Analyzing the NEB simulation
        • A recipe for faster calculations
      • Reconstruction of the Si (100) surface - a geometry optimization study with QuantumATK
        • Introduction
        • Building the geometry
        • Setting up the calculation
        • Results
        • Summary
      • Computing the work function of a metal surface using ghost atoms
        • Why use ghost atoms?
        • Setting up the geometry
        • Defining the parameters of the calculation
        • Calculation and analysis
        • Comments
      • Tuning the work function of silver by deposition of ultrathin oxide layers
        • Ag(100) and MgO(100) surfaces
        • Ag/MgO interface
        • DFT calculations
        • Analyzing the results
        • 1D Projector plugin
        • References
      • Calculating Reaction Rates using Harmonic Transition State Theory
        • Introduction
        • Modeling Pt Adatom Diffusion on Pt(100)
        • Calculating the Rate for Multiple Elementary Reaction Steps
        • References
      • Simulating Si Deposition using Silane
        • Background
        • Getting started
        • Step 1: Reference Calculations
        • Step 2: Adsorption and Dissociation of SiH4
        • Step 3: Formation and Desorption of H2
        • Conclusions
        • References
      • Calculation of Formation Energies
        • Formation energy calculations (or cohesive energy)
        • Cohesive energy of a bulk system
        • Defect formation energy calculations
        • References
      • Uniaxial and Biaxial Stress in Silicon
        • Introduction
        • Uniaxial Stress
        • Biaxial Stress
      • Elastic constants
        • Methodology
        • Calculating elastic constants using classical potentials
        • Calculate elastic constants using DFT
      • Young’s modulus of a CNT with a defect
        • CNT bulk configuration
        • Configuring the MD simulation
        • Adding Python hooks
        • Computing Young’s modulus
        • Visualize and analyse the results
        • References
      • Relativistic effects in bulk gold
        • GGA band structure
        • Spin-orbit GGA band structure
        • References
      • Geometry optimization: CO/Pd(100)
        • Bulk palladium
        • Build the Pd(100) surface and relax it
        • Relax the CO/Pd(100) system
        • Relax the CO molecule
        • Adsorption energy
      • Modeling Vacancy Diffusion in Si0.5 Ge0.5 with AKMC
        • Obtaining an Initial Structure
        • Running the AKMC Simulation
        • Conclusion
      • Computing the piezoelectric tensor for AlN
        • Introduction
        • Computing the piezoelectric tensor
        • Alternative way of calculating the piezoelectric coefficient \({e}_{33}\)
        • Computing the Born effective charge
        • References
      • Formation energies of charged defects - manual workflow
        • Procedure for calculating the formation energy
        • Neutral As vacancy in GaAs
        • Charged As vacancies in GaAs
        • Appendix
        • References
      • Boron diffusion in bulk silicon
        • Creating the B-doped Si crystal
        • Running the AKMC simulation
      • Adaptive Kinetic Monte Carlo Simulation of Pt Island Ripening
        • Introduction
        • Creating the initial configuration
        • Setting up the AKMC Simulation
        • Running the Simulation
        • Analyzing the AKMC Simulation
        • Conclusion
        • References
      • Adaptive Kinetic Monte Carlo Simulation of Pt on Pt(100)
        • Introduction
        • The AKMC method
        • Creating the initial configuration
        • Creating the AKMC script
        • Analyzing the results
        • Conclusion
        • References
      • Crystal Structure Prediction Scripter: Phases of TiO2
        • Setting up the calculation
        • Running the calculations and analyzing results
        • References
      • Electronic structure of NiO with DFT+U
        • Introduction
        • The electronic structure of NiO calculated with DFT
        • DFT+U calculation for the NiO crystal
        • References
      • DFT-D and basis-set superposition error
        • The DFT-D dispersion corrections
        • D2 correction
        • D3 correction
        • BSSE and the counterpoise correction
        • Set-up the graphene bilayer system
        • Geometry optimization without counterpoise correction
        • Including the counterpoise correction
        • Including the D2 dispersion correction
        • Including the D3 dispersion correction
        • Summary of the results
        • References
      • Formation energies and transition levels of charged defects
        • Procedure for calculating the formation energy
        • Setting up the calculation
        • Analyzing the results
        • Discussion and summary
        • Appendix
        • References
      • Using Thermochemistry Analyzer to Compare Chemical Reactions
        • Background
        • Getting started
        • Understanding the Thermochemistry Analyzer GUI
        • Example: Temperature Window for Thermal Atomic Layer Etching of HfO2 and ZrO2
        • General Uses
      • Electronic Properties of Phase Change Material Ge2Sb2Te5
        • Geometry
        • Bandgap Calculation
        • Lattice Parameters
        • Cohesive Energies
        • Neutral Vacancy Formation Energies
        • Total DOS With and Without Ge Vacancy
    • Miscellaneous
      • The DFTB model in ATK-SE
        • Installing DFTB parameters
        • Testing the installation
        • Spin polarized calculations with DFTB
      • Accessing QuantumATK internal variables
        • Internal matrices accessible in QuantumATK
        • Multi-terminal conduction
        • Transmission projection
        • AC conductance
        • References
      • Slater-Koster tight-binding models in ATK-SE
        • Introduction
        • Onsite matrix element
        • Offsite matrix elements
        • Defining the full Slater-Koster table
        • Silicon band structure
        • Adding hydrogen
        • Band gaps of passivated silicon nanowires
        • References
      • Linear response current – how to compute it, and why it is often not a good idea
      • Make Movies from QuantumATK Trajectory Files
        • Creating Animated GIF
        • Rotation Animator
        • Movie from Trajectory Files
      • Converting lattices: Rhombohedral to hexagonal and back
        • Conversion between hP and hR representations
        • Converting hP supercell to hR primitive cell
        • Crystal classifications
        • References
      • Reusing electrodes in device calculations
        • Separate scripts for electrodes and device
      • Initialize from a converged state
        • Introduction
        • Examples
      • Restarting a stopped calculation
        • Saving the checkpoint file
        • Restarting the calculation from the checkpoint file
      • Compute quantities from converged simulations
      • POV-Ray images from QuantumATK
        • Elementary functionalities through an example
        • Examining the .pov file
        • Exporting pictures with POV-Ray
      • Generating A High-k Metal Gate Stack Using the HKMG-Builder
        • Introduction
        • Workflow
      • Generating A Magnetoresistive RAM (MRAM) Stack using the MRAM-Builder
        • Introduction
        • Workflow to generate the MgO-FeCo-MgO MRAM structure
      • How to select the right calculator
        • The Calculator types
        • The DFT Calculators (LCAO and Plane Wave)
        • The Semi Empirical Calculator
        • The Force Field Calculator
      • Transport calculations with QuantumATK
        • Introduction
        • Geometry for transport calculations
        • Getting started
        • Convergence of electrode parameters
        • Zero-bias analysis
        • Finite-bias calculations
        • Summary
      • Calculate the band structure of a crystal
        • Start QuantumATK and create a new project
        • Import the Silicon structure from the Database and send it to the Scripter
        • Set up the calculation and analyse the band structure
      • Phonons, Bandstructure and Thermoelectrics
        • Introduction
        • Phonon Bandstructure of a Graphene Nanoribbon
        • Analyzing the Results
        • Algorithmic Details of the Phonon Calculator
        • Calculating Electrical and Heat Transport for a Graphene Nanoribbon
      • Introducing the QuantumATK plane-wave DFT calculator
        • Introduction
      • How to calculate reaction barriers using the Nudged Elastic Band (NEB) method
        • Create the initial and final states for the NEB
        • Set up and run the NEB calculations
        • Analyze the results
        • Summary
        • References
      • Carbon Nanotube Junctions
        • Setting up the geometry
      • Capping a carbon nanotube
        • Build an extended (5,5) carbon nanotube
        • Cut the fullerene in half
        • Capping the tube
        • Finalizing the geometry
      • Simple carbon nanotube device
        • Build and geometry optimize a short CNT
        • CNT device configuration
      • Building a Si-Si3N4 Interface
        • Preparations: Two crystals
        • Building the interface
        • Final adjustment
        • Doubling down: Buried layer model
        • Interface as a device model
      • Build a graphene nanoribbon transistor
        • Small nanoribbon transistor
        • A longer nanoribbon transistor
      • Commensurate supercells for rotated graphene layers
        • Additional rotated structures
        • References
      • Nanosheet with a hole
      • MoS2 Nanotubes
      • Graphene–Nickel interface
        • Creating the structure
        • More configurations
      • Stone–Wales Defects in Nanotubes
        • Creating the defect and wrapping the tube
        • Optimizing the structure
        • Transmission spectrum
        • References
      • Building a molecular junction
        • Benzene to DTB: Building the molecule
        • Cleaving gold into two surfaces
        • Combining the molecule and the surfaces
        • Converting the central region to a device configuration
        • References
  • Manual
    • General
      • Introduction
        • New in QuantumATK X-2025.06
        • Installing and running the software
        • How to read this manual
    • Atomic-Scale Calculators
      • DFT: LCAO
        • Introduction
        • Background information
      • DFT: Plane Wave
        • Introduction
        • Background information
      • Semi Empirical
        • Introduction
        • Background information
        • Parameters
      • Force Field
        • Introduction
        • TremoloX
        • TremoloX potential classes
        • Neural network based force field parameter sets
        • How to choose the right pretrained neural network based force field
        • TremoloX potential parameter sets
        • Pretrained moment tensor potential (MTP) parameter sets
      • NEGF: Device Calculators
        • Introduction
        • Device configuration
        • Non-equilibrium electron distribution
        • Effective potential
        • Total energy and forces
        • Transmission coefficient
        • Electrical current
        • References
    • Python in QuantumATK
      • ATK-Python
        • Python packages in QuantumATK
        • Using NumPy with QuantumATK
        • Cloning of QuantumATK Python objects
        • Plotting using pylab
      • Physical quantities and units
        • Usage Examples
        • Units available in QuantumATK
      • Read and Write Support
        • HDF5 (Default File Format)
      • Metatext
      • Spin
        • Usage Example
        • Note about Spin.All
        • Note on Spin in low level interface functions
      • Command Line Usage with QATK Shell Environments
        • Introduction
        • Use QuantumATK effectively from CLI: Shell Environments
        • Customize the environment: Python venvs
    • QuantumATK Reference Manual
      • Geometry
        • Lattices
      • Calculators
        • Common Parameters
        • DFT Calculators
        • MBPT Calculators
        • Semi-Empirical Calculator
        • Counterpoise Correction
        • Low level entities
      • Analysis
        • Common Analysis
        • Bulk Analysis
        • Device Analysis
        • DFT + U
      • Study
      • Dynamics and Optimization
        • Optimization
        • Molecular Dynamics
        • Surface Process Simulation
        • Moment Tensor Potential
        • Monte Carlo
        • Hyperdynamics
        • Constraints
        • MD Analysis
        • Image Interpolation Algorithms (NEB)
      • Defects
        • Characterization
        • Migration
      • COSMO-RS
        • Material Descriptions
        • Properties
        • Stored Data
      • Polymers
        • Builders And Equilibration
        • Potentials
        • Analysis
      • Input and Output
      • Periodic Table
      • Utilities
      • Plot
        • NanoLab Plot Reference Manual
        • Plot
      • Full QuantumATK package
        • QuantumATK
    • Technical Notes
      • Poisson solvers
        • The Hartree potential
        • Boundary conditions
        • Boundary Conditions in NEGF
        • Dielectric and metallic regions
        • Poisson solvers
        • References
      • Occupation Methods
        • Background
        • Comparison of smearing methods
        • References
      • Pseudopotentials and basis sets available in QuantumATK
        • Pseudopotentials
        • LCAO basis sets
        • Accuracy tests for elemental solids
        • Accuracy tests for mixed solids
        • Notes for each pseudopotential type
        • References
      • Doping methods available in QuantumATK
        • General background
        • Explicit charge
        • Atomic compensation charges
      • Optical response functions
        • Linear response coefficients
      • Hybrid Functionals
        • Background
        • ACE Implementation
        • Usage Examples
        • References
      • NEGF Convergence Guide
        • Introduction
        • Zero-bias NEGF calculations
        • Finite-bias NEGF calculations
        • SCF iteration control parameters
        • Contact support
      • Spin-Polarized NEGF Convergence Guide
        • Systems investigated
        • Calculating the self-energy matrix
        • Zero and finite-bias convergence: mixing parameters
        • Zero and finite-bias convergence: electrode-length and k-point sampling
        • Electrode validator
        • Contact support
      • Noncollinear spins and spin transfer torque in devices
      • Parallelization of QuantumATK calculations
        • Unit-of-work
        • Parallelization levels in QuantumATK
        • Bulk calculations
        • NEGF calculations
        • Examples of multi-level parallelisms in QuantumATK
        • References
      • GPU acceleration of proprietary feature calculations
        • Enabling GPU acceleration
        • LCAOCalculator and SemiEmpiricalCalculator
        • DeviceLCAOCalculator and DeviceSemiEmpiricalCalculator
        • Poisson solvers
        • Force Field
        • Machine-learned Force Field Training
        • Parallelization
        • Performance tips for DFT and Semi-Empirical
        • Examples
      • Performance troubleshooting guide
        • Running out of memory?
        • Want to make it run faster?
      • Study objects
        • Restart example
      • Finding Transition States
        • Nudged Elastic Band
        • Minimum Mode Following Techniques
        • Best Practices and Recommendations
        • References
      • Molecular Dynamics
        • Introduction
        • Methodology
        • NVE Simulations
        • NVT Simulations
        • NPT Simulations
        • Non-Equilibrium Simulations
        • MD Simulations with Constraints
        • Device Configurations
        • Molecules
      • Charged Point Defects
        • Defining defects
        • Pristine Reference Configuration
        • Chemical Potentials in Compound Materials
        • Charged Point Defect Calculation
        • Analyzing charged point defect calculations
        • Defect migration
        • Diffusivity of defects
        • Analyzing Diffusion Results
      • \(G_0W_0\) calculator in QuantumATK
        • Imaginary time and frequency grid
        • Coulomb integrals and Polarizability using Auxiliary Basis Sets and PARI
        • Greens functions in imaginary time
        • Polarizability in imaginary time
        • Transform from imaginary time to imaginary frequency
        • Dielectric tensor and screened Coulomb potential
        • Exchange and correlation Self-energy calculation
        • Solving the quasi-particle equation to get the band energies
        • Schematic view of the algorithm
        • \(\Gamma\) point correction for k-point convergence
        • Parallelization of the algorithm
        • Usage Examples
        • References
      • External machine-learned force fields in QuantumATK
        • Setting up the virtual environment
        • SevenNet
        • Orb models
        • DeePMD-kit
        • MatterSim
        • CHGnet
        • FAIRChem UMA
        • Other Models
    • Atomic data
      • Element data
      • Built-in semiempirical parameter sets in QuantumATK
        • Slater–Koster basis sets
        • Extended Hückel basis sets
    • Sentaurus Materials Workbench Reference Manual
      • Introduction
      • Material specifications
      • Single defect specification and convergence studies
      • Multilayer Builder
      • GrainBoundaryScattering
      • Full SMW package
        • SMW
  • Publications
    • Referencing
    • List of Publications
 
QuantumATK

Home - QuantumATK X-2025.06 Documentation¶

start

User Documentation

  1. Getting started with QuantumATK
  2. Manuals
  3. How to cite QuantumATK
  4. PDF Manual
training

Video Resources

  1. Feature Presentation Videos
  2. Webcasts
installation"

Installation

  1. QuantumATK Release Notes
  2. Download & Installation Instructions
support

Support, Blogs, and Community

  1. QuantumATK User Forum
  2. Synopsys Support
  3. Synopsys Blogs
  4. Synopsys Community
© 2025 Synopsys, Inc.Visit SolvNetPlus twitter linkedin facebook youtube