TwoParticleCoulombInteractionFFTMethod¶
- class TwoParticleCoulombInteractionFFTMethod(grid_sampling=None)¶
Calculate two-particle integrals by projecting single-particle orbitals on the real space grid and then evaluating the integral via Fast Fourier Transform as:
\(\langle \psi_a\psi_b | V | \psi_c\psi_d \rangle = \frac{\Omega}{N^2} \sum_{\mathbf{G}} V(\mathbf{G}) \mathrm{FFT}[\rho_{da}(\mathbf{r})]^*(\mathbf{G}) \mathrm{FFT}[\rho_{bc}(\mathbf{r})](\mathbf{G})\)
where \(\Omega\) is the supercell volume.
- Parameters:
grid_sampling (PhysicalQuantity of type energy |
GridSampling
|OptimizedFFTGridSampling
) – The grid sampling used to perform the FFT. For the best performance, useOptimizedFFTGridSampling
. Note that the Coulomb integrals are sensitive to the grid sampling and might require a finer grid than the default values. Default: The grid sampling set on the calculator. If the
- static eigenstatesRequireNormalization(calculator)¶
Check if the eigenstates require a normalization before calculating the two particle integrals.