amorphousPrebuilder¶
- amorphousPrebuilder(configuration, density=None, sigma=0.1)¶
- Parameters:
configuration (
BulkConfiguration
) – The base configuration to use when creating the amorphous structure. The final structure will have the same name of each element and the same shape unit cell.density (PhysicalQuantity of type mass per volume**3) – The density of the amorphous material. Default: same density as configuration
sigma (float) – The position of each atom has Gaussian noise added to it. The standard deviation is sigma times the average volume per atom. Default: 0.1
- Returns:
The amorphous configuration.
- Return type:
Usage Examples¶
Use the amorphous prebuilder to create an initial configuration for amorphous silica from an initial quartz unit cell:
# Setup a quartz cell.
lattice = Hexagonal(4.916*Angstrom, 5.4054*Angstrom)
elements = [Silicon, Silicon, Silicon, Oxygen, Oxygen, Oxygen, Oxygen, Oxygen,
Oxygen]
fractional_coordinates = [[ 0.4697 , 0. , 0. ],
[ 0. , 0.4697 , 0.666666666667],
[ 0.5303 , 0.5303 , 0.333333333333],
[ 0.4135 , 0.2669 , 0.1191 ],
[ 0.2669 , 0.4135 , 0.547567 ],
[ 0.7331 , 0.1466 , 0.785767 ],
[ 0.5865 , 0.8534 , 0.214233 ],
[ 0.8534 , 0.5865 , 0.452433 ],
[ 0.1466 , 0.7331 , 0.8809 ]]
bulk_configuration = BulkConfiguration(
bravais_lattice=lattice,
elements=elements,
fractional_coordinates=fractional_coordinates
)
# Repeat the primitive cell to make a larger configuration.
bulk_configuration = bulk_configuration.repeat(3, 3, 3)
# Make the amorphous SiO2 cell with a density of 2.2 gram/cm**3.
bulk_configuration = amorphousPrebuilder(bulk_configuration, density=2.2*gram/cm**3)
In the full script, this configuration is then equilibrated by a 10 ps NVT molecular dynamics simulation at 2000 K and a 50 ps NPT molecular dynamics simulation at 1500 K.
Notes¶
The amorphousPrebuilder
function creates a rough initial guess for an
amorphous structure. The function will return a new configuration with the same
number and type of atoms as the original, but with the unit cell vectors scaled
to give the requested density. Each atom is repositioned along a FCC grid with
Gaussian noise added to its position.
The resulting configuration requires additional optimization and equilibration in order to create a realistic amorphous structure.